King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 112 (Spring 2012) Major Exam II Thursday April 12, 2012

Time: 150 minutes, Total Pages: 13

Name:	ID:	Section:
		-

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	23	
2	22	
3	10	
4	20	
5	15	
6	15	
Total	105	

Question 1. (23 points)

(a) For the following Boolean function shown in the K-map:

 $F(A, B, C, D)=\Sigma m(0, 1, 2, 5, 6, 7, 10, 12, 13, 14, 15)$

AB CI	00	01	11	10
00	1	1	0	1
01	0	1	1	1
11	1	1	1	1
10	0	0	0	1

- (i) Identify all the *prime implicants* and the *essential prime implicants* of F.
- (ii) Simplify the Boolean function F into a <u>minimal sum-of-products</u> expression.

(b) Consider the following Boolean function \mathbf{F} together with the don't care conditions \mathbf{d} shown in the k-map:

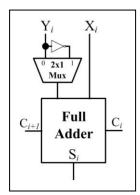
 $F(A, B, C, D)=\Sigma m(0, 10, 15), d(A, B, C, D)=\Sigma m(1, 2, 4, 8, 11, 14)$

AB CI	00	01	11	10
00	1	X	0	X
01	X	0	0	0
11	0	0	1	X
10	X	0	X	1

- (i) Simplify the Boolean function \mathbf{F} together with the don't care conditions \mathbf{d} , into $\underline{\text{minimal sum-of-products}}$ expression.
- (ii) <u>Starting with the sum-of-products expression</u>, implement the function using only **NAND** gates and **Inverters**.
- (iii) <u>Starting with the sum-of-products expression</u>, implement the function using only **NOR** gates and **Inverters**.

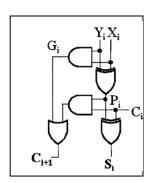
Question 2. (22 Points)

Design a circuit that accepts two 2-bit unsigned numbers $A = A_1A_0$ and $B = B_1B_0$. The circuit produces A - B when A > B, and produces A + B otherwise. Find the following:


- (a) The number of outputs produced by the circuit.
- (b) The truth table of the circuit.

(c) The minimal $\underline{product\text{-}of\text{-}sums}$ expression for each output.

Question 3. (10 Points)


(a) Use the shown circuit on the right to build a 4-bit **adder-subtractor** which can add or subtract two 4-bit numbers X and Y. A mode control input signal **M** is used to define the operation to be performed; if **M=0**, output is (X+Y) while if **M=1**, output is (X-Y).

CLEARLY label ALL inputs and outputs

(b) The Full-Adder circuit is shown to the right. Given the following gate delays;

Gate/	Propagation
Circuit	Delay
Inverter	1 τ
AND, OR	2 τ
XOR	4 τ
2x1 Mux	5 τ

(i) What is the carry propagation delay per Full adder stage?

(ii) For an *n*-bit Ripple-Carry Adder-Subtractor using the circuit of part (a), what is the total delay for the n^{th} sum bit and the $(n+1)^{th}$ carry-out bit?

(Clearly identify each delay component)

Question 4. (20 Points)

(a) If <u>6-bit registers</u> are used, show the binary number representation of the decimal numbers (+23), (-23), (+11), and (-11) using the following representation systems:

	+23	-23	+11	-11
Signed magnitude system				
Signed 1's complement system				
Signed 2's complement system				

(b) Provide the decimal equivalent of each of the following **signed 2's complement** numbers:

Signed 2's Complement Number	Equivalent Decimal Number
001101	
010011	
101101	
110011	

(c) If <u>6-bit registers</u> are used, perform the following <u>signed 2's complement</u> arithmetic operations on the provided signed 2's complement numbers. For each case, state whether the result is correct or an <u>overflow</u> has occurred.

Signed 2's Complement Arithmetic Operation	Correct Answer or Overflow?
(i) 001101 – 101101	
(ii) 010011 – 001101	
(iii) 101101 + 110011	

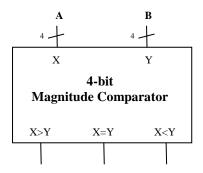
Question 5.	(15 Points)
Given the function $F(A, B, C) = A B + \overline{A} C$	
(a) Implement F using a single 2-to-1 MUX with no additional gates. Properly label a output lines.	ll input and
(b) Implement F using a 4-to-1 MUX. Properly label all input and output lines.	

(c) Implement F using a single 3-to-8 decoder, and a single NOR gate. Properly label all input and output lines.
(d) Implement F using two 2-to-4 decoders with enable, one inverter, and one OR gate. Properly label all input and output lines.

Question 6. (15 points)

- (a) Given two 4-bit signed 1's complement numbers $\bf A$ and $\bf B$; for $\bf A=1010$ and $\bf B=1101$;
 - (i) What are the corresponding decimal values of A and B?

$$A=1010 = ()_{Decimal}$$


$$B=1101 = ()_{Decimal}$$

(ii) If these values of A and B are applied to the shown magnitude comparator circuit, what are the values of the resulting outputs?

$$(\mathbf{X} > \mathbf{Y}) = \underline{\hspace{1cm}}$$

$$(\mathbf{X} = \mathbf{Y}) = \underline{\hspace{1cm}}$$

$$(\mathbf{X} < \mathbf{Y}) = \underline{\hspace{1cm}}$$

- (b) Given two 4-bit signed 1's complement numbers **A** and **B**, design the following circuits using any number of the following components: XOR gates, decoders, encoders, multiplexers, adders, and/or magnitude comparators:
 - (i) A circuit whose 4-bit output **Z** equals the larger of either **A** or **B** given that both **A** and **B** are positive values.
 - (ii) A circuit whose 4-bit output **Z** equals the larger of either **A** or **B** given that both **A** and **B** are negative values (*Hint: use conclusions of part* (a)).
 - (iii) A circuit whose 4-bit output **Z** equals the larger value of either **A** or **B** given that **A** and **B** may be +ive or -ive in any possible combination.

(You <u>must</u> clearly label the MSI parts used together with all inputs and outputs)