King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)

Term 112 (Spring 2012)
Major Exam II
Thursday April 12, 2012

Time: $\mathbf{1 5 0}$ minutes, Total Pages: 13

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	23	
2	22	
3	10	
4	20	
5	15	
6	15	
Total	105	

(a) For the following Boolean function shown in the K-map:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,2,5,6,7,10,12,13,14,15)$

AB	CD	00	01	11	10
00	1	1	0	1	
01	0	1	1	1	
11	1	1	1	1	
	10	0	0	0	1

(i) Identify all the prime implicants and the essential prime implicants of F .
(ii) Simplify the Boolean function \mathbf{F} into a minimal sum-of-products expression.
(b) Consider the following Boolean function \mathbf{F} together with the don`t care conditions \mathbf{d} shown in the k-map:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,10,15), \mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,2,4,8,11,14)$

$A B{ }^{C D}{ }^{\text {a }}$		01	11	10
00	1	X	0	X
01	X	0	0	0
11	0	0	1	X
10	X	0	X	1

(i) Simplify the Boolean function \mathbf{F} together with the don`t care conditions \mathbf{d}, into minimal sum-of-products expression.
(ii) Starting with the sum-of-products expression, implement the function using only NAND gates and Inverters.
(iii) Starting with the sum-of-products expression, implement the function using only NOR gates and Inverters.

Design a circuit that accepts two 2-bit unsigned numbers $\mathrm{A}=\mathrm{A}_{1} \mathrm{~A}_{0}$ and $\mathrm{B}=\mathrm{B}_{1} \mathrm{~B}_{0}$. The circuit produces A - B when A > B, and produces A + B otherwise. Find the following:
(a) The number of outputs produced by the circuit.
(b) The truth table of the circuit.
(c) The minimal product-of-sums expression for each output.
(a) Use the shown circuit on the right to build a 4-bit adder-subtractor which can add or subtract two 4-bit numbers X and Y. A mode control input signal \mathbf{M} is used to define the operation to be performed; if $\mathbf{M}=\mathbf{0}$, output is ($\mathrm{X}+\mathrm{Y}$) while if $\mathbf{M}=\mathbf{1}$, output is ($\mathrm{X}-\mathrm{Y}$).

CLEARLY label ALL inputs and outputs

(b) The Full-Adder circuit is shown to the right. Given the following gate delays;

Gate/ Circuit	Propagation Delay
Inverter	$\mathbf{1} \tau$
AND, OR	$\mathbf{2} \tau$
XOR	$\mathbf{4} \tau$
2×1 Mux	$\mathbf{5} \tau$

(i) What is the carry propagation delay per Full adder stage?
(ii) For an \boldsymbol{n}-bit Ripple-Carry Adder-Subtractor using the circuit of part (a), what is the total delay for the $\mathrm{n}^{\text {th }}$ sum bit and the $(\mathrm{n}+1)^{\text {th }}$ carry-out bit?
(Clearly identify each delay component)

Question 4.

(20 Points)
(a) If 6-bit registers are used, show the binary number representation of the decimal numbers $(+23),(-23),(+11)$, and (-11) using the following representation systems:

	$\mathbf{+ 2 3}$	$\mathbf{- 2 3}$	$\mathbf{+ 1 1}$	$\mathbf{- 1 1}$
Signed magnitude system				
Signed 1's complement system				
Signed 2's complement system				

(b) Provide the decimal equivalent of each of the following signed 2's complement numbers:

Signed 2's Complement Number	Equivalent Decimal Number
001101	
010011	
101101	
110011	

(c) If 6-bit registers are used, perform the following signed 2's complement arithmetic operations on the provided signed 2 's complement numbers. For each case, state whether the result is correct or an overflow has occurred.

Signed 2's Complement Arithmetic Operation	Correct Answer or Overflow?
(i) $001101-101101$	
(ii) $010011-001101$	
(iii) $101101+110011$	

Question 5.

Given the function $F(A, B, C)=A B+\bar{A} C$
(a) Implement F using a single 2-to-1 MUX with no additional gates. Properly label all input and output lines.
(b) Implement F using a 4-to-1 MUX. Properly label all input and output lines.
(c) Implement F using a single 3-to-8 decoder, and a single NOR gate. Properly label all input and output lines.
(d) Implement F using two 2-to-4 decoders with enable, one inverter, and one OR gate. Properly label all input and output lines.
(a) Given two 4-bit signed 1's complement numbers \mathbf{A} and \mathbf{B}; for $\mathrm{A}=1010$ and $\mathrm{B}=1101$;
(i) What are the corresponding decimal values of A and B ?

$$
\mathbf{A}=\mathbf{1 0 1 0}=(\quad)_{\text {Decimal }} \quad \mathbf{B}=1101=()_{\text {Decimal }}
$$

(ii) If these values of A and B are applied to the shown magnitude comparator circuit, what are the values of the resulting outputs?

$$
\begin{aligned}
& (\mathbf{X}>\mathbf{Y})= \\
& (\mathbf{X}=\mathbf{Y})= \\
& (\mathbf{X}<\mathbf{Y})=
\end{aligned}
$$

(b) Given two 4-bit signed 1's complement numbers \mathbf{A} and \mathbf{B}, design the following circuits using any number of the following components: XOR gates, decoders, encoders, multiplexers, adders, and/or magnitude comparators:
(i) A circuit whose 4-bit output \mathbf{Z} equals the larger of either \mathbf{A} or \mathbf{B} given that both \mathbf{A} and \mathbf{B} are positive values.
(ii) A circuit whose 4-bit output \mathbf{Z} equals the larger of either \mathbf{A} or \mathbf{B} given that both \mathbf{A} and \mathbf{B} are negative values (Hint: use conclusions of part (a)).
(iii) A circuit whose 4-bit output \mathbf{Z} equals the larger value of either \mathbf{A} or \mathbf{B} given that \mathbf{A} and \mathbf{B} may be +ive or -ive in any possible combination.
(You must clearly label the MSI parts used together with all inputs and outputs)

Page $\mathbf{1 3}$ of $\mathbf{1 3}$

