King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 102 (Spring 2011) Major Exam II Thursday April 28, 2011

Time: 120 minutes, Total Pages: 9

Name:_	KEY	ID:	Section:
	_		

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	26	
2	16	
3	12	
4	26	
5	20	
Total	100	

Question 1. (26 points)

(A). For the following Boolean function $F(A, B, C, D) = \sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 12, 13)$

AB	00	01	11	10
00	1	1	0	(1)
01	0	1	1	1
11	116	1	0	0
10	17	1	0	12

- (i) Identify all the *prime implicants* and the *essential prime implicants* of F. (7+2=9 points)
- (ii) Simplify the Boolean function **F** into a <u>minimal sum-of-products</u> expression. (5 points)

(B) Consider the following Boolean function ${\bf F}$ together with the don't care conditions ${\bf d}$

 $\mathbf{F}(A, B, C, D) = \sum m(0, 2, 5, 8, 10), \mathbf{d}(A, B, C, D) = \sum m(1, 4, 7, 9, 11, 12, 14, 15)$

AB	00	01	11	10
00	1	X	0	4
01	X	1/	X	0
11	X	0	X	X
10	1)	X	X	(1

- (i) Simplify the Boolean function \mathbf{F} together with the don't care conditions \mathbf{d} , into $\underline{\text{minimal sum-of-products}}$ expression. (4 points)
- (ii) Starting with the sum-of-products expression, implement the function using only **NAND** gates and **Inverters**. (4 points)
- (iii) Starting with the sum-of-products expression, implement the function using only **NOR** gates and **Inverters**. (4 points)

(i)
$$F = \overline{AC} + \overline{BD}$$

Question 2. (16 Points)

Design a 3-bit decrementer using only basic gates (AND, OR, and NOT). The circuit takes a 3-bit unsigned number $I=I_2I_1I_0$ as input and generates a 3-bit output number $Z=Z_2Z_1Z_0$ and a **Valid** output **V.** Whenever I>0 the output Z=I-1 and V=1. If I=0, the output is invalid which is indicated by an output **V=0.** Derive the simplified Boolean expressions of all outputs.

Question 3. (12 Points)

It is required to design a 7-segment display **driver** whose input is a Hexadecimal digit such that the resulting 7-seg display is as shown above (**Note that** HEX digits larger than 9 are displayed as $A \rightarrow A$, $B \rightarrow b$, $C \rightarrow C$, $D \rightarrow d$, $E \rightarrow E$, $F \rightarrow F$). The driver circuit should generate the 7-segment control signals (**a** to **g**).

If a single **decoder** and number of **OR** gates are used to build this driver circuit;

- a. What is the minimum size of the decoder? (3 points)
- b. What is the minimum a number of OR gates required to build the 7-segment display driver circuit (3 points)
- c. Draw the block diagram of the circuit showing in details how the control signals \mathbf{g} and \mathbf{c} are generated. (6 points)

Question 4.

(26 Points)

 (\mathbf{A})

i. Determine the decimal value of the 7-bit binary number (1011010) when interpreted as:

An unsigned number	A signed-magnitude number	A signed-1's complement number	A signed-2's complement number	
90	-26	-37	-38	

ii. Represent the decimal value (- 21) in binary <u>using a total of 7 bits</u> in the following notations:

A signed-magnitude number	A signed-1's complement number	A signed-2's complement number	
1010101	1101010	1101011	

iii. Perform the following signed-2's complement arithmetic operations in binary using 5 bits. All numbers given are represented in the signed-2's complement notation. Indicate clearly the <u>carry values</u> <u>from the last two stages</u>. For each of the three operations, check and indicate whether overflow occurred or not.

01010	a. 01101 +13 +10110 + -10 00011 +31	b. 01010 +10 -11001 00111 -(-7) +17 0 0 0 11 10001 5	c. $\frac{11010}{-00100}$ $\frac{-00100}{-+4}$ $\frac{-10}{-10}$ $\frac{-100}{-1010}$ $\frac{-1010}{-1010}$ $\frac{-1010}{-1010}$
Overflow Occurred? (Yes/No)	Na	Yes	NO

(B) Consider the 2's complement 4bit adder/subtractor hardware shown $(\mathbf{FA} = \text{full adder}).$

i. Fill in the spaces in the table below.

	Inputs			Outputs			Calalele		
	A	В	Control	S (binary)	C ₄	C ₃	Overflow	0	
	0111	0101	0	1100	0	1	1	+0101	
	1010	1101	1	1101	0	0	0	1100	0,001
_								1010	1010 - 1010
ha	t type of 4-bit adder is used in this design? (Circle the correct answer):							-1101	3 ⁺⁰⁰¹¹

ii. Wh - Carry-ripple adder

- Carry-look-ahead adder

b. Consider a 2-bit version of the hardware above which is shown below. Shown also is full adder used. Given that each basic gate (i.e. AND, OR, NOT) has a delay of τ ns and the XOR gate has a delay of 3τ:

The Full Adder (FA)

i. Express, as a function of τ , the longest time interval needed for the hardware to perform an operation

on the two 2-bit numbers.
$$(3 + 3 + 2 + 3) = 11$$

ii. If such an operation must be performed in no longer than 33 ns, calculate the maximum basic gate delay allowed.

Question 5. (20 Points)

(A) Given the function

$$F(A,B,C) = \Pi M(0,2,4,5,6)$$

i. Implement F using one (1) 3-to-8 decoder, and one (1) \underline{NOR} gate. Properly label all input and output lines.

ii. Implement F using two (2) 2-to-4 decoders with enable, one (1) inverter, and one (1) **OR** gate. Properly label all input and output lines.

(B) Given the function

$$F(A,B,C) = \Sigma m (1,3,7)$$

i. Implement F using an 8-to-1 MUX. Properly label all input and output lines.

ii. Implement F using a 4-to-1 MUX. Show how you obtained your solution, and properly label all input and output lines.

