King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 121 (Fall 2012)
Major Exam 1
Thursday Oct. 4, 2012

Time: 90 minutes, Total Pages: 8

Name:_KEY \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	16	
2	12	
3	12	
4	15	
5	19	
Total	74	

Question 1.
(16 points)

Convert the following numbers from the given base to the other uncrossed bases listed in the table (if needed, express fractions up to $\mathbf{3}$ digits only). Show your solution steps below the table.

Decimal	Binary	Octal	Hexadecimal	BCD $\mathbf{(8 4 2 1)}$
123.375	1111011.011	173.3		000100100011.001101110101
85.875	01010101.1110	125.70	$55 . \mathrm{E}$	
	101010111111.110111100	5277.674	ABF.DE	

Question 2.
(12 points)

Perform the following arithmetic operations in the specified number system without changing its base.

Binary Addition	Binary Multiplication	Octal Subtraction	Hexadecimal Addition
$\begin{array}{r} 1111 \\ \\ +\quad 11101111 \\ \hline \end{array}$	$\begin{array}{r} 1110 \\ \times 0110 \\ \hline \end{array}$	$\begin{aligned} & 168 \\ & 2707 \end{aligned}$	$\begin{array}{r} 1 \\ 829 \mathrm{~A} \\ +6 \mathrm{C} 73 \\ \hline \end{array}$
11111000	10000 11110 11110 0000 $\mathbf{1 0 1 0 1 0 0}$	$\begin{array}{r} -\quad 1713 \\ \hline 0774 \end{array}$	EF0D

a. Given the function $F(A, B, C, D)=\bar{A} \bar{B} D+\bar{A} D+B C(\bar{D}+\bar{A})$:
i. (3 points) Draw the logic implementation of the function F (use F as is, do not simplify).

ii.(5 points) Using Algebraic manipulation, simplify the function F to five literals.

$$
\begin{aligned}
F(A, B, C, D) & =\bar{A} \bar{B} D+\bar{A} D+B C(\bar{D}+\bar{A}) \\
& =\bar{A} D(\bar{B}+1)+B C \bar{D}+\bar{A} B C \\
& =\bar{A} D+B C \bar{D}+\bar{A} B C \\
& =\bar{A} D+B C \bar{D}
\end{aligned}
$$

b. (4 points) Provide a simplified sum-of-product (SOP) expression for the complement of the function:

$$
\begin{aligned}
F(A, B, C)= & \bar{A}+A \overline{(B+\bar{C})} \\
= & \bar{A}+A \bar{B} C \\
= & (\bar{A}+A)(\bar{A}+\bar{B} C) \\
= & \bar{A}+\bar{B} C \\
\Rightarrow \bar{F}(A, B, C) & =(\bar{A}+\bar{B} C) \\
& =A(B+\bar{C}) \\
& =A B+A \bar{C}
\end{aligned}
$$

I. Given the Boolean functions $F(A, B, C)=\sum m(0,2,4,7)$ and $G(A, B, C)=\Pi M(0,3,5,6)$.
a. (2 points) Give the algebraic sum of minterms expression for F.

$$
F=\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A B C
$$

b. (2 points) Express the function G as a sum of minterms, $G=\sum m(\ldots)$
$G=\sum m(1,2,4,7)$
c. (3 points) Express the function $F . G$ as a sum of minterms, $F . G=\sum m(\ldots)$

$$
F . G=\sum m(2,4,7)
$$

d. (3 points) Express the function $F+G$ as a product of maxterms, $F+G=\Pi M(\ldots)$
$F . G=\sum m(0,1,2,4,7)=\prod M(3,5,6)$
II. Given the two functions $H(w, x, y)=(w+\bar{x})(\bar{w}+y)$ and $K(w, x, y)=w y+\bar{x} \bar{w}$.
a. (2 points) Express the function H as a sum of minterms, $H=\sum m(\ldots)$.
$H(w, x, y)=w y+\bar{w} \bar{x}+\bar{x} y=\sum m(0,1,5,7)$
b. (2 points) Express the function K as a sum of minterms, $K=\sum m(\ldots)$.
$K(w, x, y)=w y+\bar{w} \bar{x}=\sum m(0,1,5,7)$
c. (1 point) Are the functions H and K equal? Why.

Yes, they are equal as they have equal sets of minterms.

Question 5.

(19 points)

Fill in the Spaces: (Show all work needed to obtain your answer)

a. To represent the decimal number 32 in binary we need \qquad 6 \qquad (how many) bits.
b. $(324.14)_{5}=$ \qquad 89.36 \qquad $)_{10}$

$$
=3 * 5^{2}+2 * 5+4+1 * 5^{-1}+4 * 5^{-2}=4+10+75+0.2+0.16=89.36
$$

c. A communication system uses a 1-bit parity scheme for error detection. The receiver receives a byte represented in hexadecimal as A7 without error. The parity scheme used is \qquad odd \qquad (even/odd) parity.
(1 Point)
$A 7=10100111$ => 5 1's
d. The smallest non-zero fraction that can be represented using 2 octal digits is equal to the decimal fraction (1/64).
(1 Point)
$=0.01=8^{-2}=1 / 64$
e. Given that $(543)_{\mathrm{R}}=(207)_{10}$, the radix R for the first number $=$ \qquad 6 \qquad . (show all your work)
$5 * R^{2}+4 * R+3=207=>5^{*} R^{2}+4 * R-204=0$
By solving the quadratic equation, $R=\frac{-4 \pm \sqrt{(16-4 * 5 *-204)}}{2 * 5}=\frac{-4 \pm \sqrt{4096}}{10}=\frac{-4 \pm 64}{10}$ Thus, $R=6$.
f. The function $F=X+\bar{X} Y+\bar{X} \bar{Y}$ can be simplified to \qquad 1 \qquad with minimum number of literals.
(2 points)
$F=X+\bar{X} Y+\bar{X} \bar{Y}=X+\bar{X}(Y+\bar{Y})=X+\bar{X}(1)=X+\bar{X}=1$
g. For 5 variables ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}), \mathrm{m}_{4}=\bar{A} \bar{B} C \bar{D} \bar{E}$ (algebraic expression), while $(\overline{\mathrm{A}}+\mathrm{B}+\overline{\mathrm{C}}+\overline{\mathrm{D}}+\mathrm{E})$ represents the maxterm $M_{?} 10110=M_{22}$.
(2 points)
h. An analog signal is quantized into a number of discrete amplitude levels for digital transmission which uses one bit for parity. If the transmitter sends each sample of the signal as one byte (8 bits) of data, the number of amplitude levels is \qquad 128 \qquad .

Number of bits representing amplitude $=7$ bits.
Number of amplitude levels $=2^{7}=128$.
i. The canonical form (sum of minterms or product of maxterms) represents the most simplified form of a logic function \qquad False \qquad (True/False).
(1 point)
j. If even parity is used, then in the following transmitted binary data:
(2 points)

- X1100101, the value of $X=\ldots ـ_{\text {. }}$.
- 0110001Y, the value of $Y=$ \qquad _.
k. For the logic circuit shown below, the truth table has \qquad $2^{4}=16$ \qquad (how many) rows. The maximum input-to-output propagation delay is \qquad 10 ns.

