King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 112 (Spring 2012)
Major Exam 1
Thursday March 1, 2012

Time: 90 minutes, Total Pages: 8

Name:_KEY \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	20	
2	12	
3	16	
4	12	
5	15	
Total	75	

Question 1.
(20 points)

Convert the following numbers from the given base to the other uncrossed bases listed in the table (if needed, express fractions up to 3 digits only). Show your solution steps below the table.

Decimal	Binary	Octal	Hexadecimal	BCD $\mathbf{(8 4 2 1)}$
114.67	1110010.101	162.527		000100010100.01100111
	1011110.10111	136.56	$5 \mathrm{E} . \mathrm{B} 8$	
3930.7617	111101011010.11000011	7532.606	F5A.C3	

Perform the following arithmetic operations in the specified number system.

Octal Subtraction $\begin{array}{r} 2734 \\ -1776 \end{array}$	Hexadecimal Addition $\begin{array}{r} \text { FA3B } \\ +2 \text { FE } 9 \end{array}$	Binary Subtraction $\begin{array}{r} 11100010 \\ -10111111 \end{array}$	Binary Multiplication $\begin{array}{r} 1011 \\ \times 1011 \end{array}$
0736	12 A 24	00100011	1011 1011 0000 1011 1111001

a. Given the function $F(A, B, C, D)=A(\bar{B}+C D)+\overline{C D}$:
i. Draw the logic implementation of the function F (use F as is, do not simplify):

ii.Compute the complement of the function F (use F as is, do not simplify):

$$
\begin{aligned}
& \bar{F}=\overline{(A(\bar{B}+C D))+\overline{C D}}=\overline{(A(\bar{B}+C D)) \cdot \overline{\overline{C D}}}=(\bar{A}+\overline{(\bar{B}+C D)}) \cdot C D \\
& =(\bar{A}+(B \cdot \overline{C D})) \cdot C D=(\bar{A}+(B \cdot(\bar{C}+\bar{D}))) \cdot C D
\end{aligned}
$$

b. Using Algebraic manipulation, simplify the following function to two literals:

$$
G(A, B, C)=(A+B+C)(\bar{A}+B+C)(B+\bar{C})(\bar{B}+C)
$$

By taking the dual we get:

$$
\begin{aligned}
& G(A, B, C)=A B C+\bar{A} B C+B \bar{C}+\bar{B} C \\
& =B C(A+\bar{A})+B \bar{C}+\bar{B} C \quad \text { by distributive law } \\
& =B C(1)+B \bar{C}+\bar{B} C \\
& =B C+B \bar{C}+\bar{B} C=B(C+\bar{C})+\bar{B} C=B+\bar{B} C \quad \text { by distributive law } \\
& =(B+\bar{B})(B+C) \quad \text { by distributive law } \\
& =B+C
\end{aligned}
$$

By taking the dual again:
$G(A, B, C)=B C$
c. Using Algebraic manipulation, simplify the following function to three literals:

$$
\begin{array}{ll}
H(A, B, C, D)=A B+\bar{A} C+B D+B \bar{C} \\
=A B+\bar{A} C+B D+B \bar{C}+B C & \text { by consensus } \\
=A B+\bar{A} C+B D+B(\bar{C}+C) & \text { by distributive law } \\
=A B+\bar{A} C+B D+B & \\
=\bar{A} C+B & \text { by absorption }
\end{array}
$$

Question 4.

I. Given the Boolean function $F(w, x, y, z)=(w+\bar{x} y) \bar{z}$
a. Express the function as a Product of Sum (POS).
b. Express the function as a sum of minterms.
a. $F(w, x, y, z)=(w+\bar{x} y) \bar{z}=(w+\bar{x})(w+y) \bar{z}$
b. $\quad F(w, x, y, z)=(w+\bar{x} y) \bar{z}=w \bar{z}+\bar{x} y \bar{z}=w(\bar{x}+x)(\bar{y}+y) \bar{z}+(\bar{w}+w) \bar{x} y \bar{z}=w \bar{x} \bar{y} \bar{z}+w \bar{x} y \bar{z}+$ $w x \bar{y} \bar{z}+w x y \bar{z}+\bar{w} \bar{x} y \bar{z}+w \bar{x} y \bar{z}=\sum m(2,8,10,12,14)$
II. Given the function $F(A, B, C, D)=\sum m(0,3,4,9)$
a. Give the algebraic sum of minterms expression for F.
b. Express \bar{F} as a product of Maxterms.
a. $F(A, B, C, D)=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} C D+\bar{A} B \bar{C} \bar{D}+A \bar{B} \bar{C} D$
b. $\bar{F}(A, B, C, D)=\prod M(0,3,4,9)$

Question 5.

Fill in the Spaces: (Show all work needed to obtain your answer)

a. In binary system, the largest value that can be expressed using \mathbf{n} integral digits and \mathbf{m} fractional digits is $2^{\mathrm{n}}-2^{-\mathrm{m}}$.
b. Given that an 8-bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value C 5 representing a character, the character stored in the register is \underline{E} and the parity used is even (i.e. even or odd parity). Note that the ASCII code of character ' A ' is 41 h and the ASCII code of character ' a ' is 61 h .
c. The number of minterms and maxterms in the function $F(A, B, C)=A+B+\bar{C}$ is $\underline{7}$ minterms and $\underline{1}$ maxterm.
d. Given the identity $A B+\bar{A} C+B C=A B+\bar{A} C$, using the duality principle $(A+B)(\bar{A}+C)(B+C)=(A+B)(\bar{A}+C)$.
e. Assuming that all gates have the same propagation delay of 2 ns , then the circuit takes $\underline{8} \mathrm{~ns}$ to produce the correct output.

f. The Boolean function implemented by the circuit given below is $F=D(C+\overline{A B})$.

g. The Boolean function implemented by the circuit given below is $\underline{F=A \bar{C}+B C}$.

h. Given an inverter with the following parameters $\mathrm{V}_{\mathrm{OH}}=5 \mathrm{v} \mathrm{V}_{\mathrm{OL}}=0 \mathrm{v}, \mathrm{V}_{\mathrm{IH}}=2.8 \mathrm{v}, \mathrm{V}_{\mathrm{IL}}=2.4$, the noise margins $\mathrm{NM}_{\mathrm{H}}=\mathrm{V}_{\mathrm{OH}^{-}} \mathrm{V}_{\mathrm{IH}}=5-2.8=2.2 \mathrm{v}$ and $\mathrm{NM}_{\mathrm{L}}=\mathrm{V}_{\mathrm{IL}}-\mathrm{V}_{\mathrm{OL}}=2.4-0=2.4 \mathrm{v}$.

