King Fahd University of Petroleum and Minerals
College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 111 (FALL 2011)
Major Exam 1
Thursday October 13, 2011

Time: 90 minutes, Total Pages: 6

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	22	
2	14	
3	14	
4	11	
5	14	
Total	75	

Question 1.

Convert the following numbers from the given base to the other uncrossed bases listed in the table (if needed, express fractions up to 3 digits only). Show your solution steps below the table.

Decimal	Binary	Octal	Hexadecimal	BCD $\mathbf{(8 4 2 1)}$
37.3	100101.010	45.2		
189.25	10111101.010	275.2	$B 5.6$	
14	1110			

Question 2.

Perform the following arithmetic operations in the specified number system.

Octal Addition $\begin{array}{r} 111 \\ 1775 \\ +1734 \end{array}$	Hexadecimal Subtraction $\begin{array}{r} 919 \\ \text { FA3B } \\ -27 \mathrm{E} 9 \end{array}$	Binary Subtraction $\begin{array}{r} 11010011 \\ -10000101 \end{array}$	Binary Multiplication $\begin{array}{r} 1101 \\ \times 1100 \end{array}$
3731	D252	01001110	$\begin{array}{lllll} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & \\ 1 & 0 & 1 & & \end{array}$
			10011100

Question 3.

(14 points)
a. Draw the logic implementation of the function below (use F as is, do not simplify):

$$
F=(\bar{W}+X \bar{Z})((X+W) Z)
$$

b. Obtain the complement of the following function (Don't Simplify):

$$
\begin{aligned}
G(A, B, C, D) & =A[B(\overline{C+D})+\bar{B} C \bar{D}]+D \\
= & \bar{A}[B \overline{(C+D)}+\overline{B C \bar{D}}] \bullet \bar{D} \\
= & \left\{\bar{A}+\left[\overline{B \overline{(C+D)}+\overline{B C \bar{D}}]\} \bullet \bar{D}} \begin{array}{rl}
= & \{\bar{A}+[\overline{B \overline{(C+D)} \bullet \overline{\overline{B C} \bar{D}}]\} \bullet \bar{D}} \\
= & \{\bar{A}+[\bar{B}+\overline{\overline{(C+D)}} \bullet(B+\bar{C}+D)]\} \bullet \\
= & \{\bar{A}+[(\bar{B}+C+D) \bullet(B+\bar{C}+D)]\} \bullet \\
& =\left\{A^{\prime}+\left[\left(B^{\prime}+\mathbf{C}+\mathbf{D}\right) \cdot\left(\mathbf{B}+C^{\prime}+\mathbf{D}\right)\right]\right\} \cdot \mathbf{D}^{\prime}
\end{array}\right.\right.
\end{aligned}
$$

c. Using Algebraic manipulation, simplify the following function to three literals:

$$
\begin{aligned}
& H(A, B, C, D)=(B+C) \overline{(\bar{A}+D)}+\bar{D}(\bar{A} C+A \bar{B}) \\
& \quad=(\mathbf{B}+\mathbf{C})\left(\mathbf{A D} \mathbf{D}^{\prime}\right)+\mathbf{A}^{\prime} \mathbf{C} \mathbf{D}^{\prime}+\mathbf{A B} \mathbf{B}^{\prime} \\
& \quad=\mathbf{A B} \mathbf{D}^{\prime}+\mathbf{A C D} \mathbf{D}^{\prime}+\mathbf{A}^{\prime} \mathbf{C} \mathbf{D}^{\prime}+\mathbf{A} \mathbf{B}^{\prime} \mathbf{D}^{\prime} \\
& \quad=\mathbf{A} \mathbf{D}^{\prime}\left(\mathbf{B}+\mathbf{B}^{\prime}\right)+\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \mathbf{C} \mathbf{D}^{\prime} \\
& \quad=\mathbf{A} \mathbf{D}^{\prime}+\mathbf{C} \mathbf{D}^{\prime}=\mathbf{D}^{\prime}(\mathbf{A}+\mathbf{C})
\end{aligned}
$$

Question 4.

I. Given the SOP Boolean function $F(x, y, z)=x+\bar{y} \bar{z}$
a. Express the function as a POS

$$
F(x, y, z)=\left(x+y^{\prime}\right)\left(x+z^{\prime}\right)
$$

b. Express the function as a sum of minterms

$$
\begin{aligned}
\mathrm{F} & =x\left(\mathrm{y}+\mathrm{y}^{\prime}\right)\left(\mathrm{z}+\mathrm{z}^{\prime}\right)+\mathrm{y}^{\prime} z^{\prime}\left(\mathrm{x}+\mathrm{x}^{\prime}\right) \\
& =\mathrm{xyz}+\mathrm{xyz}+\mathrm{xy} \mathrm{z}+\mathrm{xy} \mathrm{x}^{\prime} \mathrm{z}^{\prime}+\mathrm{x}^{\prime} y^{\prime} z^{\prime} \\
& =\mathrm{m}(0,4,5,6,7)
\end{aligned}
$$

II. Given the function $F(A, B, C)=\sum m(0,2,3,4,6,7)$
a. Express F as a product of Maxterms $\rightarrow \Pi \mathrm{M}(1,5)$
b. Give the algebraic product of Maxterms expression for $\mathrm{F} . \rightarrow \mathrm{F}=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}\right)$
c. Express \bar{F} as a sum of minterms and product of Maxterms

$$
\mathrm{F}^{\prime}=\Sigma \mathrm{m}(1,5)=\Pi \mathrm{M}(0,2,3,4,6,7)
$$

Question 5.

Fill in the Spaces: (Show all work needed to obtain your answer)
a. Given that $F(A, B)=A+\bar{A} B+\bar{A} \bar{B}$, then the function F is 1 at \qquad 4 (how many) rows in its truth table.

$$
\begin{aligned}
& =(A+\bar{A})(A+B)+\bar{A} \bar{B} \\
& =A+B+\bar{B} \bar{A}=A+(B+\bar{B}) \cdot(B+\bar{A}) \\
& =A+\bar{A}+B=1
\end{aligned}
$$

b. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=A B C+\bar{A} \bar{B} C+\bar{A} B \bar{C}=\Pi \mathrm{M}(0,3,4,5,6)$

$$
\begin{aligned}
& m_{11}+m_{001}+m_{010} \\
= & \sum(1,2,7)
\end{aligned}
$$

c. The logic circuit shown below is an example of \qquad 3 (how many) - level logic. If all gates have the same propagation delay of 2 ns , then the circuit takes \qquad σ ns to produce the correct output.

d. Before sending the data 1011001 over a communication link using even parity, the transmitter appends a parity check bit equal to \qquad 0 (0/1) to it.
e. A 16-bit international character code consists of p bits to represent the language and q bits to represent the character. If no language requires more than 350 characters, then it is possible to support up to \qquad (how many) languages.

p	q

\qquad
350 chars \rightarrow need 9 bits $(512>350>256)$

$$
16-9=7 \text { bits for languge } \rightarrow 2^{7}=128 \text { languages }
$$

f. For functions of the logic variables $\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$, the maxterm M_{3} is given in the algebraic form as \qquad $v+w+x+\bar{y}+\bar{z}$
g. The function $Y+\bar{X} \bar{Z}+X \bar{Y}$ can be simplified to the single maxterm: \qquad $x+y+\bar{z}$

$$
\begin{aligned}
& y+\bar{y} x+\bar{x} \bar{z} \\
= & (y+\bar{y})(y+x)+\bar{x} \bar{z} \\
= & y+x+\bar{x} \bar{z} \\
= & y+(\underbrace{x+\bar{x}}_{1}) \cdot(x+\bar{z}) \\
= & y+x+\bar{z}=x+y+\bar{z}
\end{aligned}
$$

