King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 102 (Spring 2011) Major Exam 1 Thursday March 17, 2011

Time: 90 minutes, Total Pages: 9

Name:	Key	ID:	Section: _	
	J			

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	25	
2	20	
3	10	
4	20	
Total	75	

Question 1.

(25 points)

Fill in the Spaces: (Show all work needed to obtain your answer)

a. The expressions
$$A(B+CD)+\overline{BC}$$
 and ______ are duals

- b. For the logic function F(W, X, Y, Z), minterm $m_5 = X \overline{Y} Z$.
- c. Counting the number of hours in one day in BCD requires a minimum of 8 (how many) bits.
- d. The Boolean function $F(x,y) = \Sigma m(1,3)$ simplifies to one literal as ______.

$$m_{01} + m_{1} = \overline{X} + X$$

$$m_{000} m_{01} m_{0011} = \overline{Y} (X + \overline{X})$$

e. $F(A,B,C,D) = A\overline{B}C\overline{D} + AB\overline{C}D + \overline{A}\overline{B}CD$ is represented in the canonical shorthand form as $F(A,B,C,D) = \Sigma m(3,10,13)$.

The complement $\overline{F}(A,B,C,D) = \Pi M(3,10,13)$.

f. Assume some computer hardware that performs integer arithmetic in 5 bits. The largest decimal number that can be added to 12 without causing an incorrect result is 19 .

$$\binom{2^5-1}{2^5-1}^{31-12} = 19$$

g. The decimal value of the largest 3-bit binary fraction is
$$\frac{0.875}{0.125}$$
.

h. One factor that may limit gate fan out is $\frac{0.5}{0.125}$.

propagation delay, current drive

i. The largest 2-digit octal number has the decimal value $\frac{63}{}$.

i. The largest 2-digit octal number has the decimal value 63.

$$77)_8 = 7 + 7 \times 8$$

j. Using gates having propagation delay of 5 ns each, the input-to-output delay for a logic circuit that directly implements the logic function XYZ + WV will be ns.

(20 Points)

a. Using up to 4-bit fractional accuracy, convert (103.4375)₁₀ to: (8 Points)

```
4 pts. i. Binary
```

2 ps.iii. Hexadecimal

i.
$$103$$
 | $0.4375 \times 2 = 0.8750 \implies 0$
 51 | $0.8750 \times 2 = 1.7500 \implies 1$
 12 | $0.7500 \times 2 = 1.5000 \implies 1$
 6 | 0 | $0.5000 \times 2 = 1.0000 \implies 1$

$$\Rightarrow (103.4375)_{10} = (1100111.0111)_{2}$$

$$ii. (col 100 111.011 100)_2 = (147.34)_g$$

$$iii.$$
 (0110 0111. 0111)₂ = (67.7)₁₆

b. Find the result of the following operations:

(9 Points)

2 pts. i.
$$(37.4)_{16} + (59.7)_{16}$$

3 pts. ii. $(37.4)_8 + (59.7)_{16}$
2 pts. iii. $(101)_2 \times (110)_2$
2 pts. iv. $(111100)_2 - (100011)_2$

i.
$$(37.4)_{16}$$

+ $(59.7)_{16}$
 $\overline{(90.8)_{16}}$

ii.
$$(59.7)_{16} = (01011001.0111)_2$$

$$= (131.34)_8$$

$$\Rightarrow (37.4)_8$$

$$+ (131.34)_8$$

$$\frac{(170.74)_8}{(170.74)_8}$$

$$= (011111.100)_2$$

$$= (4F.8)_{16}$$

$$+ (59.7)_{16}$$

$$\frac{(78.F)_{16}}{(78.F)_{16}}$$

iii.
$$\frac{(101)_2}{(110)_2}$$

$$\frac{101}{101}$$

$$\frac{(11110)_2}{(11110)_2}$$

$$iv.$$
 $(111100)_{2}$ $-(106011)_{2}$ $(011001)_{2}$

c. Determine the radix r for the following case: $(6A)_r = (86)_{14}$

(3 Points)

$$(6A)_{r} = (86)_{14} = 8 \times 14 + 6 = (118)_{10}$$

$$\Rightarrow 6\gamma + 10 = 118$$

$$\Rightarrow$$
 $\gamma = 18$

Question 3. (10 Points)

Prove the identity of each of the following Boolean functions using algebraic manipulation. Start with the left-hand side expression and derive from it the right-hand side expression.

(i)
$$\bar{a}\bar{c} + ad + b\bar{c}d = \bar{a}\bar{c} + ad$$

$$A^C + AD + BC^D = A^C + AD + BC^D + C^D$$
 (by consensus between $A^C + AD$)
= $A^C + AD + C^D$ (by absorption of BC^D in C^D)
= $A^C + AD$ (by consensus between $A^C + AD$)

Another Solution:

$$A^C + AD + BC^D = A^C + AD + BC^D (A + A) = A^C + AD + ABC^D + ABC^D = A^C + AD (by absorption of ABC^D)$$

(ii)
$$\overline{\left(\overline{a}\left[\overline{c}+d\right]+c\left[\overline{b}+\overline{d}\right]+\overline{c}\,\overline{d}\right)} = a\,d\left(\overline{b}+\overline{c}\right)$$

$$= (a + c d) (c + b d) (c + d)$$
 (by Demogan's Law)

$$= (a c' + a b d) (c + d)$$
 (by distributive law)

$$= (a c d + a b c d + a b d)$$
 (by distributive law)

$$= a d (c' + b)$$
 (by distributive law)

Question 4. (20 Points)

a. For the circuit shown, the propagation delay (in nano-seconds) for each gate is listed in the table below. (5 Points)

Gate	Propagation Delay (in Nano ¹ -Seconds)
G1	1 ns
G2	1.5 ns
G3	4 ns
G4	2.5 ns
G5	2 ns

(i) What is the Boolean expression of the output function F

$$F = (\overline{X} + \overline{Z})(X + \overline{Z})$$

(ii) What is the worst case path delay for this circuit
$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}{1}$

b. Express the following function in the sum of minterms form $\{\Sigma(m_i)\}$ and the product of Maxterms form $\{\Pi(M_i)\}$ (6 Points)

$$F(A,B,C,D) = A'C(B'+D) = \overline{A}C\overline{B} + \overline{A}C\overline{D} \qquad m_3$$

$$= \overline{A}C\overline{B}(D+\overline{D}) + \overline{A}CD(B+\overline{B}) = \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD$$

$$= \overline{A}\overline{B}CD + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD + \overline{A}\overline{B}CD$$

$$\frac{3}{100} = 10^{-9}$$

- For the Boolean function $F(A, B, C, D) = \sum (m0, m2, m5, m7, m11, m15,)$ (5 Points)
 - i. Write the corresponding algebraic Boolean expression F(A, B, C, D) (without simplification)

$$F = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} \overline{D} +$$

ii. What is the product of Maxterms form of $F \{ \Pi (M_i) \}$?

$$F = \pi M(1,3,4,6,8,9,10,12,13,14)$$

Write the corresponding product of Maxterms Boolean expression F(A, B, C, D)iii.

(without simplification)
$$F = (A + B + C + \overline{D})(A + B + \overline{C} + \overline{D})(A + B + C + \overline{D})(\overline{A} + B + C + \overline{D})$$

$$(\overline{A} + B + C + \overline{D})(\overline{A} + B + \overline{C} + \overline{D})(\overline{A} + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + C + \overline{D})$$

$$(\overline{A} + B + C + \overline{D})(\overline{A} + B + \overline{C} + \overline{D})(\overline{A} + B + C + \overline{D})(\overline{A} + B + C + \overline{D})$$

$$(\overline{A} + B + \overline{C} + \overline{D})$$

d. Using Boolean Algebra, put the sum of minterms function F(x, y, z) into its simplest

form; where
$$F(\mathbf{x}, \mathbf{y}, \mathbf{z}) = x'y'z' + xy'z + x'yz' + x'y'z$$
 (4 Points)
$$= \overline{\chi} \overline{Z} (\overline{y} + \overline{y}) + \overline{y} \overline{Z} (\overline{\chi} + \overline{\chi})$$

$$= \overline{\chi} \overline{Z} + \overline{y} \overline{Z}$$