King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)

Term 151 (Fall 2015-2016)
Major Exam 1
Saturday Oct. 10, 2015

Time: 90 minutes, Total Pages: 8

Name:_KEY \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- No Calculators are allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	23	
2	12	
3	12	
4	7	
Total	54	

Question 1.

Fill in the spaces in the questions below: (Show all work needed to obtain your answer)

1) The decimal number $(60.875)_{10}$ is represented in binary as $(\underline{111100.111})_{2}$.
2) The binary number $(1100011.001)_{2}$ is represented in decimal as $(99.125)_{10}$.
3) The decimal number $(100.75)_{10}$ is represented in hexadecimal as $(\underline{64 . c})_{16}$.
4) The hexadecimal number (AC.A $)_{16}$ is represented in decimal as $(\underline{172.625})_{10}$.
5) The hexadecimal number (B3.5) $)_{16}$ is represented in binary as $(\underline{10110011.0101})_{2}$.
6) The result of performing the following operation in binary $(11010100)_{2}-(01011011)_{2}=(01111001)_{2}$
7) The result of performing the following operation in hexadecimal $(\mathrm{A5})_{16}+(\mathrm{CE})_{16}=(\underline{173})_{16}$.
8) In a base R number system, given that the value ($x 8)_{\mathrm{R}}$ is equal to (32) $)_{10}$, where x is a single digit in the such base R system, find the proper values of R and x. (Answer : $x=\underline{2}$ and $\mathrm{R}=\underline{12}$).
9) The largest unsigned decimal value that can be expressed using 3 binary integer digits and 3 binary fractional digits is $2^{3}-2^{-3}=7.875$.
10) The number $\mathbf{2 5}$ is represented in $\mathbf{B C D}$ as 00100101 .
11) Given that 80 students have registered in the COE 202 course, and that each of these students should be assigned a unique n-bit binary code. The minimum value of n is $\underline{7}$ and the number of additional students that the code can accommodate is $\underline{2}^{7}-80=128-80=48$.
12) Given that an 8-bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value E5 representing a character, the character stored in the register is 'e' and the parity used odd (i.e., even or odd parity). Note that the ASCII code of character ' A ' is 41 h and the ASCII code of character ' a ' is 61 h . Note that other character codes are consecutive, i.e., the ASCII code of character ' B ' is 42 h and the ASCII code of character ' b ' is 62 h .

Question 2.

Use Boolean algebra to solve the following questions. Show clearly all your steps.
(I) Consider the following Boolean function:

$$
F(A, B, C)=A B^{\prime} C+B^{\prime} C^{\prime}+A B^{\prime} C^{\prime}+A^{\prime} C^{\prime}
$$

Simplify \mathbf{F} to a minimum number of literals (in SOP form) using Algebraic manipulations. (4 points)

$$
\begin{aligned}
& =A B^{\prime}\left(C+C^{\prime}\right)+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} \\
& =A B^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} \\
& =A B^{\prime}+A^{\prime} C^{\prime}(B y \text { consensus theorem })
\end{aligned}
$$

(II) Consider the following Boolean function:

$$
F(X, Y, W, Z)=Y+X^{\prime} Y^{\prime} W Z+Y^{\prime} W Z+X^{\prime} Y W Z '+Y^{\prime} W^{\prime} Z+X Y W Z '
$$

Simplify \mathbf{F} to a minimum number of literals (in SOP form) using Algebraic manipulations. (5 points)

$$
\begin{aligned}
& =Y\left(1+X^{\prime} W Z^{\prime}+X W Z^{\prime}\right)+Y^{\prime} Z\left(X^{\prime} W+W+W^{\prime}\right) \\
& =Y+Y^{\prime} Z \\
& =Y+Z
\end{aligned}
$$

(III) Find the Dual and the Complement of the following function \mathbf{G} : (3 points)

$$
\text { G = (A+B)CD' }+E+F^{\prime}
$$

Dual of $\mathbf{G}=\left(A B+C+D^{\prime}\right) E F^{\prime}$

$$
G^{\prime}=\left[A^{\prime} B^{\prime}+C^{\prime}+D\right] E^{\prime} F
$$

Question 3.

(12 points)
(I) Given the Boolean function $F(A, B, C)=A+B^{`} C$
a. Determine and express the minterms algebraically. (3 points)
b. Determine and express the maxterms algebraically. (3 points)
a) $F=A B^{`} \quad+A B \quad+A^{`} B^{`} C+A B^{`} C$ $=A B^{`} C^{\prime}+A B^{`} C+A B C^{`}+A B C \quad+A^{`} B^{`} C+A B^{\prime} C$ $=A B^{`} C^{`}+A B^{`} C+A B C^{`}+A B C \quad+A^{`} B^{`} C$
b) $F=\left(A+B^{`} \quad(A+C)\right.$
$=\left(A+B^{`}+C^{\prime}\right)\left(A+B^{`}+C\right) \quad\left(A+B^{\prime}+C\right)(A+B+C)$ $=\left(A+B^{`}+C^{\prime}\right)\left(A+B^{`}+C\right) \quad(A+B+C)$
(II) Given the Boolean functions E and F shown in the following truth table:

Using the numerical form (i.e. $\Sigma(), \Pi()$) show the following:
a. Minterms of F (2 points)
b. Maxterms of F^{\prime} (2 points)
c. Minterms of G , where $\mathrm{G}=\mathrm{E}+\mathrm{F}$ (2 points)
a) $F=\Sigma(0,1,2,6)$
b) $F^{\circ}=\Pi(0,1,2,6)$
c) $G=\sum(0,1,2,3,4,6)$

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{F}	\mathbf{E}
0	0	0	1	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	0
1	1	0	1	0
1	1	1	0	0

Question 4.

(7 points)
Consider the circuit shown. Assuming the gate propagation delays given in Table I, answer the following:
a) What is the longest path delay from an input to the output? (1 point)

The longest delay is across the path
\{G2,G3, G4\}
b) What is the value of this delay? (2 points) The value of this delay is $3+1+2=6 \mathrm{~ns}$

Table I

Gate	Delay
Not	1 ns
AND	2 ns
OR	3 ns

Blank Page

