King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)

Term 141 (Fall 2014-2015)
Major Exam 1
Saturday October 18, 2014

Time: 90 minutes, Total Pages: 8

Name:_KEY \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- No Calculators are allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	17	
2	16	
3	12	
4	15	
Total	60	

Question 1.
(I) Without converting to decimal, express the binary number (111.0101)2 in Octal and Hexadecimal.

$$
\begin{aligned}
& \left(111.010 _100\right)_{2}=(7.24)_{8} . \\
& (0111.0101)_{2}=(7.5)_{16} .
\end{aligned}
$$

(II) Express the decimal number 129.33 in Binary and BCD (with 4-bit fraction accuracy).
(6 points)
$129=128+1=2^{7}+2^{0}=10000001$.
$0.33 \times 2=0.66 \Rightarrow 0$
$0.66 \times 2=1.32 \Rightarrow 1$
$0.32 \times 2=0.64 \Rightarrow 0$
$0.64 \times 2=1.28$ => 1
$129.33=(10000001.0101)_{2}=(000100101001.00110011)_{\mathrm{BCD}}$
(III) Adding an even parity bit as the MSB, the Binary code 1001101 becomes $\underline{01001101 .}$
(IV) Perform the following arithmetic operations in the given bases. (Show your work)

Binary Multiplication	Binary Subtraction	Hexadecimal Addition
$\begin{array}{r} 1011 \\ \times \quad 101 \\ \hline 1011 \\ 00000 \\ 101100 \\ \hline 110111 \end{array}$	$\begin{array}{r} 100.10 \\ -\quad 11.01 \\ \hline 001.01 \end{array}$	$\begin{array}{r} 37 \mathrm{~A} \\ +\quad 93 \\ \hline 40 \mathrm{D} \end{array}$

Question 2.

(16 points)

Use Boolean algebra to solve the following questions. Show clearly all your steps.
(I) Simplify each the following Boolean functions to the specified number of literals:
a. $F 1=x y z+\bar{x} y+\bar{x} \bar{y} \quad$ (3 literals)
(3 points)
$=x y z+x^{\prime}\left(y+y^{\prime}\right)$
$=x y z+x^{\prime}$
$=x^{\prime}+y z$
b. $F 2=\bar{x} \bar{y} \bar{z}+\bar{x} y \bar{z}+\bar{x} y z+x \bar{y} \bar{z} \quad$ (4 literals)
(4 points)
$=y^{\prime} z^{\prime}\left(x^{\prime}+x\right)+x^{\prime} y\left(z^{\prime}+z\right)$
$=y^{\prime} z^{\prime}+x^{\prime} y$
c. $F 3=w x+w x y+\bar{w} y z+\bar{w} \bar{y} z+\bar{w} x y \bar{z}$ (6 literals)
(5 points)
$=(w x+w x y)+\left(w^{\prime} y z+w^{\prime} y^{\prime} z\right)+w^{\prime} x y z{ }^{\prime}$
$=w x+w^{\prime} z+w^{\prime} x y z{ }^{\prime}$
$=\mathrm{wx}+\mathrm{w}^{\prime}\left(\mathrm{z}+\mathrm{xyz}{ }^{\prime}\right)$
$=\mathrm{wx}+\mathrm{w}^{\prime}(\mathrm{z}+\mathrm{xy})$
$=w x+w^{\prime} z+w^{\prime} x y$
$=w^{\prime} z+x\left(w+w^{\prime} y\right)$
$=w^{\prime} \mathrm{z}+\mathrm{x}(\mathrm{w}+\mathrm{y})$
$=w^{\prime} z+w x+x y$
(II) Without simplification, write out the complement and dual forms of the following expression:

$$
(x+\bar{y} \bar{z})(w \bar{x} z+\bar{w} y \bar{z})
$$

(4 points)

The complement of the function is:
$F^{\prime}=x^{\prime} \cdot(y+z)+\left(w^{\prime}+x+z^{\prime}\right) \cdot\left(w+y^{\prime}+z\right)$
The dual of the function is:
$x \cdot\left(y^{\prime}+z^{\prime}\right)+\left(w+x^{\prime}+z\right) \cdot\left(w^{\prime}+y+z^{\prime}\right)$

Question 3.
(I) Express the Boolean function Y of the following given circuit without simplification:
(3 points)

$$
Y=(A+B)(\bar{A}+\bar{B})+B C+\bar{D}
$$

(II) Given the Boolean function $F(X, Y, Z)=(X+Y)(\bar{X}+Z)(\bar{Y}+\bar{Z})$:
(6 points)
a. Express F as a product-of-maxterms, $F=\Pi M$.
b. Find the algebraic sum-of-minterms expression for F.
a. $\bar{F}=\bar{X} \bar{Y}+X \bar{Z}+Y Z=\sum m(0,1,3,4,6,7)$

$$
F=\prod M(0,1,3,4,6,7)
$$

b. $F=\sum m(2,5)$

$$
F=\bar{X} Y \bar{Z}+X \bar{Y} Z
$$

(III) Given that $F(A, B, C)=\sum m(0,2,5,6)$ and $G(A, B, C)=\prod M(1,2,5,7)$, express the function $F . \bar{G}$ as a sum-of-minterms.

$$
\begin{aligned}
& \bar{G}=\sum m(1,2,5,7) \\
& F . \bar{G}=\sum m(2,5)
\end{aligned}
$$

Question 4.
(I) Circle the correct word in the following statements:
a. It is desirable to have a low noise margin NML as (large - small) as possible
b. It is desirable to have a high noise margin NM_{H} as (large - small) as possible
c. It is desirable to have V_{IH} as (large - small) as possible
d. It is desirable to have $\mathrm{V}_{\text {IL }}$ as (large - small) as possible
e. It is desirable to have $\mathrm{V}_{\text {он }}$ as (large - small) as possible
f. It is desirable to have V_{OL} as (large - small) as possible
(II) Fill in the Truth Table for each of the following three circuits. Indicate whether the circuit operates properly or not. If circuit operation is improper (invalid) state the reason for that. Inputs A, and B are independent of one another and may assume any possible binary values.
(6 Points)

Page $\mathbf{8}$ of $\mathbf{8}$
(III) The shown table gives propagation delays of some basic gates. For the circuit shown below, answer the following:
d. Identify the critical path of the circuit (path with longest propagation delay). What is its associated delay value?
(3 Points)

Gate	Delay
Inverter	1 ns
2-Input AND	2 ns
2-Input OR	3 ns
3-Input AND	3 ns
3-Input OR	4 ns

Critical Path is: G2-G5
Delay of Critical Path $=4+3=7 \mathrm{~ns}$

e. What is the maximum frequency at which the circuit may be operated? (1 Point)

$$
\operatorname{Fmax}=1 /\left(7 \times 10^{-9}\right) \approx 142.8 \mathrm{M} \mathrm{~Hz}
$$

f. The gate which drives the largest load is gate \qquad G2
(1 Point)
g. Name a gate that has the highest fanin in the circuit (\{G2,G5\}), the fanin of this gate

$$
\text { is } \quad 3
$$

