King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 132 (Spring 2013-2014) Major Exam 1 Saturday March 1, 2014

Time: 90 minutes, Total Pages: 11

Name:_		ID:	Section:
Notes:			
•	 Do not open the exam book until instr 	ructed	
•	No Calculators are allowed (ba	sic, advanced, cell p	hones, etc.)
•	• Answer all questions		

• Any assumptions made must be clearly stated

• All steps must be shown

Question	Maximum Points	Your Points
1	13	
2	12	
3	15	
4	15	
5	10	
Total	65	

(13

points)

Perform the following number base conversion with fraction precision of 3-digit where needed. Show your work in the "Work/ Scratch Area"

Required Conversion	Work / Scratch Area		
a. (i) $(0.339)_{10} = ($) ₂ .	0.399 X 2=0.798		
J. (c) (c) c) J.	0.798 X 2=1.596		
	0.596 X 2=1.182		
	Therefore $(0.399)_{10} = (0.011)_2$		
	$(0.011)_2 = 2^{-2} + 2^{-3} = 0.25 + 0.125 = 0.375$		
	0.399-0.375=0.024 due to base conversion		
(ii) Convert the above obtained binary result			
back to decimal. = () ₁₀			
(iii) What is the conversion loss in accuracy?			
b. (80.125) ₁₀ =() ₂			
	Integer part		
<u>Fraction part</u>			
0.125 X 2=0.25	80 .		
0.25 X 2=0.5	40 0		
0.5 X 2=1.0	20 0		
(1010000 001)	10 0		
$=(1010000.001)_2$	5 0		
	2 1		
	0 1		

c.	(10) ₁₃ =()10	1x13=10
d.	(F319) ₁₆ = ()2.	=(1111 0011 0001 1001) ₂
e.	(F319) ₁₆ = ()8.	=(1 111 001 100 011 001) ₂ =(171431) ₈
f.	(9403) ₁₀ = () BCD 8421	=(1001_0100_0000_0011) _{BCD 8421 code} .

points)

I. Compute the following arithmetic operations in the indicated bases (9 Points)

a. (A69C – 3F) ₁₆	b. (255 + 127) ₈
=A65D	=404
c. (1101 1000 - 1001 1111) ₂	d. (1101 1000 * 101) ₂
1101_1000 1001_1111 0011 1001	101 1000 101 1101 1000 0000 00000 1101 100000 10000111000

II. What is the radix r of the number system for which $(24 + 17 = 40)_r$. (3 Points)

Question 3. (15

points)

Use Boolean algebra to solve the following questions. Show clearly all your steps.

a. Give the simplest form of $F=Y(X+Y)+\overline{(X+Y)}Z+YZ$ (4 points) $F=(XY+Y)+(\overline{X}\,\overline{Y}Z+YZ)$

 $F = Y(X + 1) + Z(\overline{X}\overline{Y} + Y)$ $F = Y \cdot 1 + Z((\overline{X} + Y)(\overline{Y} + Y))$

 $F = Y + Z((\overline{X} + Y).1)$

 $F = Y + Z(\overline{X} + Y)$ $F = Y + YZ + \overline{X} Z$

 $F = Y(1+Z) + \overline{X}Z$

 $F = Y + \overline{X}Z$

b. Given that $C = A \overline{B} + \overline{A} B$ show that $A \overline{C} + \overline{A} C = B$ (5 Points)

c. Find the values of the 4 Boolean variables A, B, C, and D by solving the following set of simultaneous Boolean equations: (3 Points)

i.
$$\bar{A} + B = 0$$

ii.
$$AB = AC$$

iii.
$$AB + A\bar{C} + CD = \bar{C}D$$

- Equation (i) implies that: **B = 0** AND **A = 1**
- Substituting into Equation (ii) \rightarrow : LHS = AB = 1.0 = 0 = AC = 1.C = C which implies that: C = 0
- Substituting into Equation (iii) \rightarrow : LHS = $AB + A\overline{C} + CD = 1.0 + 1.1 + 0.D = 1$
- Thus, $RHS = 1 = \bar{C}D = 1.D = D$ which implies that: **D = 1**
- Thus, ABCD = 1001

d. Without simplification, write out the complement and dual forms of the following expression:

$$(x + \overline{y}\overline{z})(w\overline{x}z + \overline{w}y\overline{z})$$
: (3 Points)

Let
$$F = (x + \overline{y}\overline{z})(w\overline{x}z + \overline{w}y\overline{z}) = (x + (\overline{y}\overline{z}))((w\overline{x}z) + (\overline{w}y\overline{z}))$$

Using De-Morgan Theorem, we get the complement expression as follows:

$$\overline{F} = \overline{x}.(y+z) + (\overline{w} + x + \overline{z}).(w + \overline{y} + z)$$

The dual expression of F is given by:

$$Dual(F) = x.(\bar{y} + \bar{z}) + (w + \bar{x} + z).(\bar{w} + y + \bar{z})$$

Question 4. (15

points)

I. The truth table of a digital circuit which has two inputs (A, B) and two outputs (Y, Z) is shown:(4 points)

a. Write the Boolean expressions of the circuit outputs (Y, Z).

A	В	Y	Z
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

$$Y = \overline{A}B + A\overline{B}$$
$$Z = \overline{A}B$$

b. Draw the logic diagram of this circuit (i.e., its gate-level implementation).

- II. Given the Boolean function $F(X,Y,Z) = (X+Y)(X+Z)(\bar{X}+\bar{Z})$: (4 **points**)
 - a. Express F as a <u>sum-of-minterms</u>, $F = \sum m$.
 - b. Find the <u>algebraic</u> product-of-Maxterms expression for F.

a.
$$F' = X' Y' + X' Z' + X Z = \sum m (0, 1, 2, 5, 7)$$

 $F = \sum m(3, 4, 6).$

b.
$$F = \prod M(0,1,2,5,7) = (X+Y+Z)(X+Y+\bar{Z})(X+\bar{Y}+Z)(\bar{X}+Y+\bar{Z})(\bar{X}+\bar{Y}+\bar{Z})$$

III. Given $F(A, B, C) = \sum m (0,3,5,7)$ and $G(A, B, C) = \prod M (1,2,4,7)$, express the function $F + \bar{G}$ as a sum-of-minterms. (3 points)

$$\bar{G}=\sum m(1,2,4,7)$$

$$F + \bar{G} = \sum m(0,1,2,3,4,5,7)$$

IV. Given the following two circuits representing the functions F and G. Determine whether the two functions F and G are equivalent or not. Justify your answer.

(4 points)

$$F = (A B)' A + (A B)' B = (A' + B') A + (A' + B') B = A B' + A' B = \sum m(1,2)$$

$$G = (A + B)(A B)' = (A + B)(A' + B') = A' B + A' B = \sum m(1,2)$$

Thus, F and G implement equivalent functions.

Question 5. (10

points)

I. Assume that the propagation delay of a gate depends only on its number of inputs. Thus, the propagation delay of an Inverter is 1 ns, of a 2-input gate (AND or OR) is 2 ns, and of a 3-input gate is 3 ns. For the circuit shown below;

- a. What is the longest propagation delay from an input to the output? (2 point)
- b. If A=0, B=1, C=1, D=1, and F=0, draw the signal waveforms at points G, H, and Y due to the shown applied signal at E by completing the timing diagram given below. (3 points)

II. Given an inverter with the following parameters $V_{OH}=5v$ $V_{OL}=0v$, $V_{IH}=2.8v$, $V_{IL}=1.6$, the noise margins $NM_H = V_{OH} - V_{IH} = 5 - 2.8 = 2.2v$ and $NM_L = V_{IL} - V_{OL} = 1.6v$. (2 points)

III. The Boolean function implemented by the circuit given below expressed as a sum-of-products is

$$\underline{F = C (A + B) + C' A B = A C + B C + A B C' = A C + B C + A B}.$$
 (3 points)

