King Fahd University of Petroleum and Minerals
College of Computer Science and Engineering
Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 112 (Spring 2012)
Major Exam 1
Thursday March 1, 2012

Time: 90 minutes, Total Pages: 8

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	20	
2	12	
3	16	
4	12	
5	15	
Total	75	

Convert the following numbers from the given base to the other uncrossed bases listed in the table (if needed, express fractions up to 3 digits only). Show your solution steps below the table.

Decimal	Binary	Octal	Hexadecimal	BCD $(\mathbf{8 4 2 1})$
114.67				
	1011110.10111			

Perform the following arithmetic operations in the specified number system.

Octal Subtraction $\begin{array}{r} 2734 \\ -1776 \end{array}$	Hexadecimal Addition $\begin{array}{r} \text { FA3B } \\ +2 \text { FE } 9 \end{array}$	Binary Subtraction $\begin{array}{r} 11100010 \\ -10111111 \end{array}$	Binary Multiplication $\begin{array}{r} 1011 \\ \times 1011 \end{array}$
		-	

a. Given the function $F(A, B, C, D)=A(\bar{B}+C D)+\overline{C D}$:
i. Draw the logic implementation of the function F (use F as is, do not simplify):
ii.Compute the complement of the function F (use F as is, do not simplify):
b. Using Algebraic manipulation, simplify the following function to two literals:

$$
G(A, B, C)=(A+B+C)(\bar{A}+B+C)(B+\bar{C})(\bar{B}+C)
$$

c. Using Algebraic manipulation, simplify the following function to three literals: $H(A, B, C, D)=A B+\bar{A} C+B D+B \bar{C}$
I. Given the Boolean function $F(w, x, y, z)=(w+\bar{x} y) \bar{z}$
a. Express the function as a Product of Sum (POS).
b. Express the function as a sum of minterms.
II. Given the function $F(A, B, C, D)=\sum m(0,3,4,9)$
a. Give the algebraic sum of minterms expression for F.
b. Express \bar{F} as a product of Maxterms.

Question 5.

(15 points)

Fill in the Spaces: (Show all work needed to obtain your answer)

a. In binary system, the largest value that can be expressed using \mathbf{n} integral digits and \mathbf{m} fractional digits is \qquad _.
b. Given that an 8-bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value C 5 representing a character, the character stored in the register is \qquad and the parity used is
\qquad (i.e. even or odd parity). Note that the ASCII code of character 'A' is 41 h and the ASCII code of character ' a ' is 61 h .
c. The number of minterms and maxterms in the function $F(A, B, C)=A+B+\bar{C}$ is \qquad minterms and \qquad maxterms.
d. Given the identity $A B+\bar{A} C+B C=A B+\bar{A} C$, using the duality principle $(A+B)(\bar{A}+C)(B+C)=$ \qquad
e. Assuming that all gates have the same propagation delay of 2 ns , then the circuit takes \qquad ns to produce the correct output.

f. The Boolean function implemented by the circuit given below is $\mathrm{F}=$ \qquad .

g. The Boolean function implemented by the circuit given below is $\mathrm{F}=$ \qquad .

h. Given an inverter with the following parameters $\mathrm{V}_{\mathrm{OH}}=5 \mathrm{v} \mathrm{V}_{\mathrm{OL}}=0 \mathrm{v}, \mathrm{V}_{\mathrm{IH}}=2.8 \mathrm{v}, \mathrm{V}_{\mathrm{IL}}=2.4$, the noise margins $\mathrm{NM}_{\mathrm{H}}=$ \qquad and $\mathrm{NM}_{\mathrm{L}}=$ \qquad —.

