King Fahd University of Petroleum and Minerals
College of Computer Science and Engineering
Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 111 (FALL 2011)
Major Exam 1
Thursday October 13, 2011

Time: 90 minutes, Total Pages: 6

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	22	
2	14	
3	14	
4	11	
5	14	
Total	75	

Question 1.

 (22 points)Convert the following numbers from the given base to the other uncrossed bases listed in the table (if needed, express fractions up to 3 digits only). Show your solution steps below the table.

Decimal	Binary	Octal	Hexadecimal	BCD $\mathbf{(8 4 2 1)}$
37.3				
	1010101.011			
		275.2		00010100

Perform the following arithmetic operations in the specified number system.

Octal Addition $\begin{array}{r} 1775 \\ +1734 \end{array}$	Hexadecimal Subtraction $\begin{array}{r} \text { FA3B } \\ -27 E 9 \end{array}$	Binary Subtraction $\begin{array}{r} 11010011 \\ -10000101 \end{array}$	Binary Multiplication $\begin{array}{r} 1101 \\ \times 1100 \end{array}$

Question 3.

a. Draw the logic implementation of the function below (use F as is, do not simplify):

$$
F=(\bar{W}+X \bar{Z})((X+W) Z)
$$

b. Obtain the complement of the following function (Don't Simplify):

$$
G(A, B, C, D)=A[B(\overline{C+D})+\bar{B} C \bar{D}]+D
$$

c. Using Algebraic manipulation, simplify the following function to three literals:

$$
H(A, B, C, D)=(B+C)(\bar{A}+D)+\bar{D}(\bar{A} C+A \bar{B})
$$

Question 4.

I. Given the SOP Boolean function $F(x, y, z)=x+\bar{y} \bar{z}$
a. Express the function as a POS
b. Express the function as a sum of minterms
II. Given the function $F(A, B, C)=\sum m(0,2,3,4,6,7)$
a. Express F as a product of Maxterms
b. Give the algebraic product of Maxterms expression for F .
c. Express \bar{F} as a sum of minterms and product of Maxterms

Question 5.

Fill in the Spaces: (Show all work needed to obtain your answer)

a. Given that $F(A, B)=A+\bar{A} B+\bar{A} \bar{B}$, then the function F is 1 at \qquad (how many) rows in its truth table.
b. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=A B C+\bar{A} \bar{B} C+\bar{A} B \bar{C}=\Pi \mathrm{M}($ \qquad _)
c. The logic circuit shown below is an example of \qquad (how many) - level logic. If all gates have the same propagation delay of 2 ns , then the circuit takes \qquad ns to produce the correct output.

d. Before sending the data 1011001 over a communication link using even parity, the transmitter appends a parity check bit equal to \qquad (0/1) to it.
e. A 16-bit international character code consists of p bits to represent the language and q bits to represent the character. If no language requires more than 350 characters, then it is possible to support up to \qquad (how many)

| \mathbf{p} | \mathbf{q} |
| :--- | :--- | languages.

16 bits \qquad
f. For functions of the logic variables $\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$, the maxterm M_{3} is given in the algebraic form as \qquad .
g. The function $Y+\bar{X} \bar{Z}+X \bar{Y}$ can be simplified to the single maxterm: \qquad .

