King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 111 (FALL 2011) Major Exam 1 Thursday October 13, 2011

Time: 90 minutes, Total Pages: 6

Name:_		 		ID:	Section:	
Notes:						
	ъ	.1	1 1			

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	22	
2	14	
3	14	
4	11	
5	14	
Total	75	

Question 1. (22 points)

Convert the following numbers from the given base to the other uncrossed bases listed in the table (if needed, express fractions up to 3 digits only). Show your solution steps below the table.

Decimal	Binary	Octal	Hexadecimal	BCD (8421)
37.3				
	1010101.011			
		275.2		
				00010100

Question 2. (14 points)

Perform the following arithmetic operations in the specified number system.

Octal	Hexadecimal	Binary	Binary
Addition	Subtraction	Subtraction	Multiplication
Addition 1775 +1734	FA3B - 27E9	11010011 - 10000101	Multiplication 1101 × 1100 ———

Question 3. (14 points)

a. Draw the logic implementation of the function below (*use F as is, do not simplify*):

$$F = \left(\overline{W} + X \overline{Z}\right) \left((X + W) Z \right)$$

b. Obtain the complement of the following function (*Don't Simplify*):

$$G(A,B,C,D) = A\left[B(\overline{C+D}) + \overline{B}C\overline{D}\right] + D$$

c. *Using Algebraic manipulation*, simplify the following function to **three** literals:

$$H(A,B,C,D) = (B+C)(\overline{A}+D) + \overline{D}(\overline{A}C+A\overline{B})$$

Question 4. (11 points)

- I. Given the SOP Boolean function $F(x, y, z) = x + \overline{y} \overline{z}$
 - a. Express the function as a POS
 - b. Express the function as a sum of minterms

- II. Given the function $F(A, B, C) = \sum m(0,2,3,4,6,7)$
 - a. Express F as a product of Maxterms
 - b. Give the *algebraic* product of Maxterms expression for F.
 - c. Express \bar{F} as a sum of minterms and product of Maxterms

- a. Given that $F(A, B) = A + \overline{AB} + \overline{AB}$, then the function F is 1 at _____ (how many) rows in its truth table.
- b. $F(A,B,C) = ABC + \overline{ABC} + \overline{ABC} = \prod M(\underline{})$
- c. The logic circuit shown below is an example of _____ (how many) level logic. If all gates have the same propagation delay of 2 ns, then the circuit takes _____ ns to produce the correct output.

- d. Before sending the data 1011001 over a communication link using **even** parity, the transmitter appends a parity check bit equal to $\underline{\hspace{1cm}}$ (0/1) to it.
- e. A 16-bit international character code consists of p bits to represent the language and q bits to represent the character. If no language requires more than 350 characters, then it is possible to support up to _____ (how many) languages.

- f. For functions of the logic variables V, W, X, Y, Z, the maxterm M_3 is given in the algebraic form as ______.
- g. The function $Y + \overline{X} \overline{Z} + X \overline{Y}$ can be simplified to the single maxterm: ______.