King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 102 (Spring 2011) Major Exam 1 Thursday March 17, 2011

Time: 90 minutes, Total Pages: 9

Name:	ID:	Section:

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	25	
2	20	
3	10	
4	20	
Total	75	

Fill in the Spaces: (Show all work needed to obtain your answer)

- a. The expressions $A(B+CD) + \overline{BC}$ and ______ are duals
- b. For the logic function F(W, X, Y, Z), minterm $m_5 = X \, \overline{Y} \, Z$. _____(True/False)
- c. Counting the number of hours in one day in BCD requires a minimum of _____(how many) bits.
- d. The Boolean function $F(x, y) = \sum m(1,3)$ simplifies to one literal as _____.
- e. $F(A,B,C,D) = A\overline{B}C\overline{D} + AB\overline{C}D + \overline{A}\,\overline{B}CD$ is represented in the canonical shorthand form as $F(A,B,C,D) = \Sigma m(\underline{\hspace{1cm}})$.

 The complement $\overline{F}(A,B,C,D) = \Pi M(\underline{\hspace{1cm}})$
- f. Assume some computer hardware that performs integer arithmetic in 5 bits. The largest decimal number that can be added to 12 without causing an incorrect result is _____.
- g. The decimal value of the largest 3-bit binary fraction is _____.
- h. One factor that may limit gate fan out is _____
- i. The largest 2-digit octal number has the decimal value_____.
- j. Using gates having propagation delay of 5 ns each, the input-to-output delay for a logic circuit that directly implements the logic function XYZ + WV will be ______ ns.

Question 2. (20 Points)

a. Using up to 4-bit fractional accuracy, convert $(103.4375)_{10}$ to: (8 Points)

- i. Binary
- ii. Octal
- iii. Hexadecimal

b. Find the result of the following operations:

i.
$$(37.4)_{16} + (59.7)_{16}$$

ii.
$$(37.4)_8 + (59.7)_{16}$$

iii.
$$(101)_2 \times (110)_2$$

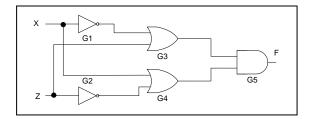
iv.
$$(111100)_2 - (100011)_2$$

c. Determine the radix *r* for the following case: $(6A)_r = (86)_{14}$

(3 Points)

Question 3. (10 Points)

Prove the identity of each of the following Boolean functions using algebraic manipulation. Start with the left-hand side expression and derive from it the right-hand side expression.


(i)
$$\bar{a}\bar{c} + ad + b\bar{c}d = \bar{a}\bar{c} + ad$$

(ii)
$$\overline{\left(\bar{a}\left[\bar{c}+d\right]+c\left[\bar{b}+\bar{d}\right]+\bar{c}\;\bar{d}\right)}=a\;d\;(b+\bar{c})$$

Question 4. (20 Points)

a. For the circuit shown, the propagation delay (in nano-seconds) for each gate is listed in the table below. (5 Points)

Gate	Propagation Delay (in Nano ¹ -Seconds)	
G1	1 ns	
G2	1.5 ns	
G3	4 ns	
G4	2.5 ns	
G5	2 ns	

(i) What is the Boolean expression of the output function F

(ii) What is the worst case path delay for this circuit

b. Express the following function in the sum of minterms form $\{\Sigma(m_i)\}$ and the product of Maxterms form $\{\Pi(M_i)\}$ (6 Points)

$$F(A,B,C,D) = A' C(B' + D)$$

-

 $^{^{1}}$ Nano = 10^{-9}

- c. For the Boolean function $F(A, B, C, D) = \sum (m0, m2, m5, m7, m11, m15,)$, (5 Points)
 - i. Write the corresponding algebraic Boolean expression F(A, B, C, D) (without simplification)

ii. What is the product of Maxterms form of $F \{ \Pi (M_i) \}$?

iii. Write the corresponding product of Maxterms Boolean expression F(A, B, C, D) (without simplification)

d. Using Boolean Algebra, put the sum of minterms function $F(\mathbf{x}, \mathbf{y}, \mathbf{z})$ into its simplest form; where $F(\mathbf{x}, \mathbf{y}, \mathbf{z}) = x'y'z' + xy'z + x'yz' + x'y'z$ (4 Points)