King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)

Term 102 (Spring 2011)
Major Exam 1
Thursday March 17, 2011

Time: 90 minutes, Total Pages: 9

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	25	
2	20	
3	10	
4	20	
Total	75	

Fill in the Spaces: (Show all work needed to obtain your answer)

a. The expressions $A(B+C D)+\overline{B C}$ and \qquad are duals
b. For the logic function $F(W, X, Y, Z)$, minterm $m_{5}=X \bar{Y} Z$. \qquad (True/False)
c. Counting the number of hours in one day in BCD requires a minimum of \qquad (how many) bits.
d. The Boolean function $\mathrm{F}(\mathrm{x}, \mathrm{y})=\Sigma \mathrm{m}(1,3)$ simplifies to one literal as \qquad .
e. $F(A, B, C, D)=A \bar{B} C \bar{D}+A B \bar{C} D+\bar{A} \bar{B} C D$ is represented in the canonical shorthand form as $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}($ \qquad).
The complement $\overline{\mathrm{F}}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi \mathrm{M}($ \qquad)
f. Assume some computer hardware that performs integer arithmetic in 5 bits. The largest decimal number that can be added to 12 without causing an incorrect result is \qquad _.
g. The decimal value of the largest 3-bit binary fraction is \qquad -.
h. One factor that may limit gate fan out is \qquad .
i. The largest 2-digit octal number has the decimal value \qquad .
j. Using gates having propagation delay of 5 ns each, the input-to-output delay for a logic circuit that directly implements the logic function $\mathrm{XYZ}+\mathrm{WV}$ will be \qquad ns.
k. To implement the function $\mathrm{F}(\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Pi(2,14,29)$ as a product of maxterms, we need
\qquad (how many) OR gates, each having \qquad (how many) inputs.

1. To represent any integer greater than 1 , the binary system requires the largest number of digits among all number systems \qquad (True/False)
m . The Hi-Z logic state becomes relevant when connecting: \qquad (select one)
i) Inputs of logic gates together
ii) An output of a logic gate to inputs of other logic gates
iii) Outputs of logic gates together
a. Using up to 4-bit fractional accuracy, convert (103.4375) $)_{10}$ to: (8 Points)
i. Binary
ii. Octal
iii. Hexadecimal
b. Find the result of the following operations:

$$
\begin{array}{cl}
\text { i. } & (37.4)_{16}+(59.7)_{16} \\
\text { ii. } & (37.4)_{8}+(59.7)_{16} \\
\text { iii. } & (101)_{2} \times(110)_{2} \\
\text { iv. } & (111100)_{2}-(100011)_{2}
\end{array}
$$

c. Determine the radix r for the following case: $(6 A)_{r}=(86)_{14}$

Prove the identity of each of the following Boolean functions using algebraic manipulation. Start with the left-hand side expression and derive from it the right-hand side expression.
(i) $\bar{a} \bar{c}+a d+b \bar{c} d=\bar{a} \bar{c}+a d$
(ii) $\overline{(\bar{a}[\bar{c}+d]+c[\bar{b}+\bar{d}]+\bar{c} \bar{d})}=a d(b+\bar{c})$

Question 4.

(20 Points)
a. For the circuit shown, the propagation delay (in nano-seconds) for each gate is listed in the table below.

Gate	Propagation Delay (in Nano ${ }^{1}$-Seconds)
G1	1 ns
G2	1.5 ns
G3	4 ns
G4	2.5 ns
G5	2 ns

(i) What is the Boolean expression of the output function F
(ii) What is the worst case path delay for this circuit
b. Express the following function in the sum of minterms form $\left\{\Sigma\left(\mathrm{m}_{i}\right)\right\}$ and the product of Maxterms form $\left\{\boldsymbol{\Pi}\left(\mathbf{M}_{i}\right)\right\}$ (6 Points)

$$
F(A, B, C, D)=A^{\prime} C\left(B^{\prime}+D\right)
$$

[^0]c. For the Boolean function $\boldsymbol{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(\mathrm{m0}, \mathrm{~m} 2, \mathrm{~m} 5, \mathrm{~m} 7, \mathrm{~m} 11, \mathrm{~m} 15$,$) , (5 Points)$
i. Write the corresponding algebraic Boolean expression $\boldsymbol{F}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})$ (without simplification)
ii. What is the product of Maxterms form of $F\left\{\Pi\left(\mathrm{M}_{i}\right)\right\}$?
iii. Write the corresponding product of Maxterms Boolean expression $\boldsymbol{F}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})$ (without simplification)
d. Using Boolean Algebra, put the sum of minterms function $\boldsymbol{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ into its simplest form; where $\boldsymbol{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})=x^{\prime} y^{\prime} z^{\prime}+x y^{\prime} z+x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z$

[^0]: ${ }^{1}$ Nano $=10^{-9}$

