King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering
 Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 111 (Fall 2011)
Major Exam 2
Thursday December 8, 2011

Time: 120 minutes, Total Pages: 10

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	16	
2	20	
3	20	
4	34	
Total	90	

Question 1.

I.
a. What are the conditions for a gate to be universal?

Can implement Any Boolean expression without need for any other type gates. This is equivalent to ability to perform any of the fo;;owing:

1. $\{\mathrm{AND}, \mathrm{NOT}\}$
2. $\{\mathrm{OR}, \mathrm{NOT}\}$,
3. $\{\mathrm{AND}, \mathrm{OR}, \mathrm{NOT}\}$

Show that a two input gate performing the function $f(A, B)=A^{\prime} B$ is a universal gate.
[3 Points]

1. Can Implment $\{\mathrm{NOT}\} \rightarrow \mathrm{B}=1, f=\mathrm{A}^{\prime}$
2. Can Implment $\{A N D\} \rightarrow$ Use two such gates; one acts as inverter generating A^{\prime} and a $2^{\text {nd }}$ with it's a-input $=A$ ', $B=B$ and, $f=A B$
II. Let $\boldsymbol{F}(\mathbf{x}, \boldsymbol{y}, \mathbf{z})+\boldsymbol{G}(\mathbf{x}, \boldsymbol{y}, \mathbf{z})=\boldsymbol{H}(\mathbf{x}, \boldsymbol{y}, \mathbf{z})$, where F, G and H are Boolean functions of three variables x, y, and z. Given that

$$
F(x, y, z)=x^{`} z^{`}+y z \quad \text { and } \quad \boldsymbol{H}(x, y, z)=z^{`}+x y^{`}
$$

a- Find a possible function $\mathbf{G}(\mathbf{x}, \boldsymbol{y}, \mathbf{z})$ that will satisfy the above relation. [3 Points]
b- Is the solution unique? If not, what is the number of possible $G(x, y, z)$ functions that can satisfy the above relation?
(Hint: Draw the K-maps of the functions above)
(Hint: Draw the K-maps of the functions above)

- Since $F+G=H$, then

1) IF $H=0$ then $F=\varnothing$ \& $G=\theta$
2) IF $H=1$ and $F=\varnothing$ then
G must be $1 \Longrightarrow b=c=1$
3) IF $H=1$ and $F=1$ Then
G can be either θ, or 1

$$
\rightarrow a=b=e=x
$$

$\therefore G^{x^{12}}=$| 100 | 01 | 11 | |
| :--- | :--- | :--- | :--- |
| x | | | x |
| 1 | 1 | | x |

III. Using the K-Map method, give a simplified SOP expression for the Boolean function F(A, B, C, D) $=\sum(0,1,4,10,14)$ subject to don't care conditions d(A,B, C, D) $=\sum(2,5,8,15)$.
<SHOW your WORK>
$\mathbf{F}(A, B, C, D)=\mathbf{A}^{\prime} \mathbf{C}^{\prime}+\mathbf{A C D}{ }^{\prime}$

Question 2.

Given a 4-bit unsigned number $\boldsymbol{X}\left(x_{3} x_{2} x_{1} x_{0}\right)$, the function $\boldsymbol{F}(\boldsymbol{X})$ is defined as:

$$
\boldsymbol{F}(\boldsymbol{X})=\left\{\begin{aligned}
X-1, & X \text { is odd } \\
\frac{X}{2}, & X \text { is even }
\end{aligned}\right.
$$

You are to design a digital circuit that takes X as an input and produces $\boldsymbol{Z}=\boldsymbol{F}(\boldsymbol{X})$ as output;
(a) How many bits are required to represent the output Z ?

The maximum unsigned \# representable in 4 bits is 15 which is an odd \# $\Rightarrow F(15)=14$ which is also representable in 4 bits \Rightarrow \# of bits for Z is 4
(b) Derive the truth table for the output function Z.

x_{3}	x_{2}	x_{1}	x_{0}	z_{3}	z_{2}	z_{1}	z_{0}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	1
0	0	1	1	0	0	1	0
0	1	0	0	0	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	0	0	1	1
0	1	1	1	0	1	1	0
1	0	0	0	0	1	0	0
1	0	0	1	1	0	0	0
1	0	1	0	0	1	0	1
1	0	1	1	1	0	1	0
1	1	0	0	0	1	1	0
1	1	0	1	1	1	0	0
1	1	1	0	0	1	1	1
1	1	1	1	1	1	1	0

(c) If \mathbf{Z} is to be implemented using only NAND gates, derive minimized expressions for the output bits 20 of the circuit.
[8 points]

$Z_{0}=A \bar{B}$

$$
Z_{2}=A B+A \bar{D}+B D
$$

(d) Implement the output expressions obtained in (c) using NAND gates only

Question 3.

(20 Points)
a. In each of the following problems, first represent the numbers in brackets in binary in the signed2 's complement notation using 5 bits then perform the indicated arithmetic operation using only binary addition.
[8 points]
In each case check if you have obtained the correct results and indicate clearly if overflow occurred or not.

b. Interpret each of the following 5-bit binary numbers in the format indicated:

Binary Number	Is equal to (in decimal)	When interpreted as:
11011	-11	Signed-magnitude
01101	+13	Signed-1's complement
10110	$01010-10$	Signed-2's complement
11010	26	Unsigned

c. When doing signed-2's complement arithmetic in 6-bits: (Fill in the spaces with signed decimal values)
[6 points]

- The range of numbers that can be represented extends from \qquad 32 to +31 .

$$
31-13=18
$$

- The largest positive number that can be added to +13 without causing an overflow is ${ }^{+}$ \qquad .
- Overflow may occur when (circle all that applies):
i. Adding a positive number to a negative number
ii. Subtracting a negative number from a negative number
iii. Subtracting a negative number from a positive number

Question 1. Given the function

$$
\mathbf{F}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\boldsymbol{\Pi}(\mathbf{1 , 2 , 4 , 5 , 7})
$$

a. Implement F using 2 2-to- 4 decoders and any other gates you need $\mathbf{F}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\Sigma \mathrm{m}(\mathbf{0}, \mathbf{3}, \mathbf{6})$

b. Implement F using the 4-to-1 MUX shown below (see steps for obtaining the solution)

	Y		F
	0		Z
	0		
0	1		Z
0	1		
	0		0
	0		
1	1		Z
		0	

c. It is required to design a circuit that adds two $\mathbf{5}$-bit numbers, A and B , that are represented in signed-magnitude. The result \boldsymbol{O}, also 5-bits, should also be represented in signed-magnitude notation. Ignore overflow. You can Design this circuit in anyway you like or follow the suggested sequence below.
(I) Using MSI parts, design a circuit that receives two 5-bit signed numbers A \& B (represented in signed-magnitude) and produces three outputs \mathbf{L}, \mathbf{S} and $\mathbf{L S}$, where:

- L: a 4-bit number which equals the larger magnitude of either A or B irrespective of their signs (e.g, $\mathrm{A}=-5$ and $\mathrm{B}=+4$ then $\mathrm{L}=5$ but if $\mathrm{A}=-3$ and $\mathrm{B}=+7$ then $\mathrm{L}=7$)
- S: a 4-bit number which equals the smaller magnitude of either A or B irrespective of their signs (e.g, $A=-5$ and $B=+4$ then $S=4$ but if $A=-3$ and $B=+7$ then $S=3$)
- LS: a single bit which equals the sign of larger magnitude number of either A or B (e.g, $\mathrm{A}=-5$ and $\mathrm{B}=+4$ then $\mathrm{LS}=1$ or if $\mathrm{A}=-3$ and $\mathrm{B}=+7$ then $\mathrm{LS}=0$).

Magnitude of $\mathrm{A}=\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}=\mathrm{A}_{3.0}$ same with B ...
Sign of A is $\mathrm{A}_{4} \ldots$ same with $\mathrm{B} \ldots$

(II) Using MSI parts, design a Signed-Magnitude Adder that will take as input $\mathbf{L}, \mathbf{S}, \mathbf{L S}$ (produced by the circuit in I above), \mathbf{A} and \mathbf{B}, and generates $\mathbf{A}+\mathbf{B}$
Hint: to add two signed-magnitude numbers \boldsymbol{A} and \boldsymbol{B} we can do the following:

1. If $\operatorname{sign}(\mathbf{A})=\operatorname{Sign}(\mathbf{B}) \rightarrow$ then magnitude $(\mathbf{O})=\operatorname{magnitude}(\mathbf{A})+\operatorname{magnitude}(\mathbf{B}), \operatorname{sign}(\mathbf{O})=\operatorname{Sign}(\mathbf{A})$
2. else $($ i.e. $\operatorname{sign}(\mathbf{A}) \neq \operatorname{Sign}(\mathbf{B})) \rightarrow$ subtract the smaller number from the larger number magnitude $(\mathbf{O})=$ $\max [\operatorname{magnitude}(\mathbf{A})$, magnitude $(\mathbf{B})]-\min [\operatorname{magnitude}(\mathbf{A})$, magnitude $(\mathbf{B})]$, $\operatorname{sign}(\mathbf{O})=$ Sign of the number with the larger magnitude

Sign of output $\left(\mathrm{O}_{4}\right)$ is LS
Magnitude is either $\mathrm{L}+\mathrm{S}$ (when signs are equal)
or L-S when signs are different
The Adder/Subtractor performs A+B if the $\mathrm{Add} / \mathrm{Sub}$ input is 1 and $\mathrm{A}-\mathrm{B}$ otherwise

4-bit
Adder/Subtractor

