King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 141 (Fall 2014)

Final Exam

Wednesday Dec. 31, 2014

7:00 p.m. – 10:00 p.m.

Time: 180 minutes, Total Pages: 11

Name: _KEY	ID:	Section:
_		

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	13	
2	15	
3	10	
4	6	
5	8	
6	15	
Total	67	

Question 1. (13 Points)

I) Given the sequential circuit below with a single input X, a single output Z and two D flip-flops:

a) Is this a rising-edge or falling-edge triggered circuit? (1 Point)

falling-edge triggered

- **b)** Is this a Mealy or Moore circuit? (1 Point) Moore
- c) Obtain the state table of the circuit. (5 Points)

a1a0	q1+q2+		
q1q0	x=0	x=1	
00	01	11	
01	00	10	
10	00	01	
11	10	11	

$$D1 = q1 q0 + x q1'$$

 $D0 = x q1 + q1' q0'$
 $z = q0$

II) Given the state table below for a sequential circuit with a single input x and a single output z,

Current	Next State		Output	
State	$(q1q0)^{t+1}$		2	Z
$(q1q0)^{t}$	x=0	x=1	x=0	x=1
00	00	01	0	0
01	00	10	0	1
10	00	10	0	1
11	00	10	0	0

a) Draw the state diagram of the circuit. (2 Points)

b) Complete the timing diagram below for the values of the two flip flops q1q0 and the output z assuming falling edge triggered flip flops are used and starting from initial state q1q0=00. (4 Points)

Question 2. (15 Points)

I. Draw a circuit implementing the following state table minimizing the number of used gates. (7 Points)

Current State	Input	Next State	Output
(AB)	(x)	(D_AD_B)	(z)
00	0	00	0
00	1	01	0
01	0	00	1
01	1	11	0
10	0	00	1
10	1	10	0
11	0	10	1
11	1	11	0

Solution:

- II. Choose the correct answer for each of the following: (2 Points)
 - a. A PLA is made of:
 - i. Fixed AND array, fixed OR array
 - ii. Fixed AND array, programmable OR array
 - iii. Programmable AND array, Fixed OR array
 - iv. Programmable AND array, programmable OR array
 - b. A PAL is made of:
 - i. Fixed AND array, fixed OR array
 - ii. Fixed AND array, programmable OR array
 - iii. Programmable AND array, Fixed OR array
 - iv. Programmable AND array, programmable OR array
- Optimize a solution to program the following programmable logic to implement the III. following functions: (6 Points)

$$f_1(A, B, C, D) = \sum_{-} m(6,7,11,12,13,14,15)$$

$$f_2(A, B, C, D) = \sum m(1, 2, 3, 4, 5, 8, 9, 10, 11)$$

Solution:

$$f_1 = AB + BC + ACD$$

$$\overline{f}_1 = \overline{A}\overline{B} + \overline{A}\overline{C} + \overline{B}\overline{C} + \overline{B}\overline{D}$$

$$f_2 = A\overline{B} + \overline{B}C + \overline{B}D + AB\overline{C}$$
 $f_2 = AB + BC + \overline{A}\overline{B}\overline{C}\overline{D}$

$$\overline{f}_2 = AB + BC + \overline{A}\overline{B}\overline{C}\overline{D}$$

We could use f_1 and f'_2 for an optimal solution

Question 3. (10 Points)

A <u>Moore</u> <u>Transition Detector</u> synchronous sequential circuit has a single input *x* and a single output z. The input data is applied serially at the input x and the circuit produces a 1 in the output z whenever a transition from 0 to 1 or from 1 to 0 are detected at the applied input data. Draw the state diagram of this circuit. Assume the existence of an asynchronous reset input to reset the machine to a reset state. A sample input/output data is given below.

(**NOTE**: You are *only* required to draw the state diagram **Nothing MORE**)

Example:			t = 0	time
	Input	x	0 1 1	100100011111
	Output	z	0 0 1	101011001000

Question 4. (6 Points)

It is required to design a synchronous sequential circuit that receives two serial inputs \mathbf{x} and \mathbf{y} and produces a serial output \mathbf{z} that computes the equation \mathbf{z} =2 \mathbf{x} - \mathbf{y} . Draw the state diagram of this circuit assuming a <u>Mealy</u> model. Assume the existence of an asynchronous reset input to reset the machine to a reset state. Two samples of input/output data are given below.

 $(\underline{NOTE}: You are \underline{only} required to draw the state diagram \underline{Nothing MORE})$

Examples:		1	time $time$
	Input	x	00100
		y	01100
	Output	z	0 1 0 0 0

		$\frac{t = 0}{I} \qquad \frac{time}{I} >$
Input	x	10110
	y	11010
Output	z	11110

Question 5 (8 Points)

- a. The sequential circuit above is clocked <u>asynchronously</u> (synchronously / asynchronously)(1 Pt)
- b. Draw the waveforms of signals A, B, C in response to the shown Clk signal assuming initial ABC value of **000**. **(4 Points)**

c. Assuming a negligible setup and hold times, an *inverter* delay of **1** ns and a delay from the *clock active edge till the new flip flop output* appearing of **4** ns, what is the <u>maximum clock frequency</u> at which the above circuit can operate? (**3 Points**)

Inverter delay is in parallel with the clock-to-Q delay (4ns), i.e. it does not add up. Maximum delay is when the count makes transition from count 7 (111) to 0 (000) \rightarrow 3 successive transitions each 4ns delayed from the other \rightarrow Total delay = 3 x 4 ns = 12 ns

Max Frequency = $1/(12 \times 10^{-9})$ = 83.3 Mega Hertz

Question 6 (15 Points)

It is required to design a digital calendar that counts days and months of the year. Given a clock signal with frequency **1 pulse/24 hours**, you are required to design the following as part of this system:

a. Design a **mod 12** months counter to count the months of the year (count $0 \rightarrow$ January up to

Count $11 \rightarrow$ December). Use a **mod 16** counter to build this *months* counter. Assume the mod 16 counter to have the following control inputs:

- **CE** "Count Enable,
- **Clr** (synchronous clear), and
- **Ld** (parallel load), together with its associated inputs I₀, I₁, I₂, I₃.

The counter should produce an output signal (C_{out}) which equals 1 *only* during the last month of the year. (3 Points)

Solution:

Mod 12 counter counts from $0 \rightarrow 11$

¹ The Gregorian year months are: January, February, March, April, May, June, July, August, September, October, November and December respectively.

b. Design a *days* counter to count the days of the month. The counter has two input signals x_1x_0 which indicate the number of days in the current month as shown in the table below.

x_1x_0	# of Days	Months	Month Count
0 0	31	January, March, May, July, August, October,	0, 2, 4, 6, 7, 9, 11
		December	
0 1	30	April, June, September, November	3, 5, 8, 10
1 0	29	February in leap years	1
1 1	28	February in ordinary years	1

The counter should produce an output signal (C_{month}) which equals 1 only during the last day of the month. Design this days counter using a $mod\ 32$ binary counter having the same control inputs as the counter in part (a). (5 Points)

c. Given the output $(m_3 m_2 m_1 m_0)$ of the *months* 'counter of part (a) and an input signal **L** that equals **1** only throughout leap years, derive the logic circuits which generate the signals x_I and x_0 used by the *days* counter. (3 **Points**)

(*Hint:* Use a 4x16 decoder and any other needed parts)

d. Given the clock signal of frequency **1 pulse/24 hours**, show how to assemble the parts designed in (a), (b) and (c) to build a *synchronous* counter which gives the current month of the year and the day of that month. Assume that the counter is reset to 0 at the beginning of each year. *This assembled design should produce an output signal* (C_{year}) which equals **1** only during the last day of the year. (**4 Points**)

Note: Use black boxes for the parts designed in (a), (b) and (c) showing only the interface input and output signals, various signal connections and the logic to generate C_{year}

