King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 141 (Fall 2014)
Final Exam
Wednesday Dec. 31, 2014
7:00 p.m. - 10:00 p.m.

Time: 180 minutes, Total Pages: 11

Name: _KEY \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	13	
2	15	
3	10	
4	6	
5	8	
6	15	
Total	67	

Question 1.

I) Given the sequential circuit below with a single input X , a single output Z and two D flip-flops:

a) Is this a rising-edge or falling-edge triggered circuit? (1 Point)
falling-edge triggered
b) Is this a Mealy or Moore circuit? (1 Point)

Moore
c) Obtain the state table of the circuit. (5 Points)

q1q0	$q 1+q 2+$	
	$x=0$	$x=1$
00	01	11
01	00	10
10	00	01
11	10	11

$\mathrm{D} 1=\mathrm{q} 1 \mathrm{q} 0+\mathrm{xq} 1$,
$\mathrm{D} 0=\mathrm{xq} 1+\mathrm{q} 1^{\prime} \mathrm{q} 0^{\prime}$
$\mathrm{z}=\mathrm{q} 0$
II) Given the state table below for a sequential circuit with a single input x and a single output z ,

$\begin{gathered} \hline \text { Current } \\ \text { State } \\ (\mathrm{q} 1 \mathrm{q} 0)^{\mathrm{t}} \\ \hline \end{gathered}$	Next State		Outputz	
	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$
00	00	01	0	0
01	00	10	0	1
10	00	10	0	1
11	00	10	0	0

a) Draw the state diagram of the circuit. (2 Points)

b) Complete the timing diagram below for the values of the two flip flops q1q0 and the output z assuming falling edge triggered flip flops are used and starting from initial state q1q0=00. (4 Points)

Clock
x

Question 2.

I. Draw a circuit implementing the following state table minimizing the number of used gates. (7 Points)

Current State $(\boldsymbol{A B})$	Input (\boldsymbol{x})	Next State $\left(\boldsymbol{D}_{\boldsymbol{A}} \boldsymbol{D}_{\boldsymbol{B}}\right)$	Output (\boldsymbol{z})
00	0	00	0
00	1	01	0
01	0	00	1
01	1	11	0
10	0	00	1
10	1	10	0
11	0	10	1
11	1	11	0

Solution:

$D_{B}=B x+A^{\prime} x$

II. Choose the correct answer for each of the following: (2 Points)
a. A PLA is made of:
i. Fixed AND array, fixed OR array
ii. Fixed AND array, programmable OR array
iii. Programmable AND array, Fixed OR array
iv. Programmable AND array, programmable OR array
b. A PAL is made of:
i. Fixed AND array, fixed OR array
ii. Fixed AND array, programmable OR array
iii. Programmable AND array, Fixed OR array
iv. Programmable AND array, programmable OR array
III. Optimize a solution to program the following programmable logic to implement the following functions: (6 Points)

$$
\begin{aligned}
& f_{1}(A, B, C, D)=\sum m(6,7,11,12,13,14,15) \\
& f_{2}(A, B, C, D)=\sum m(1,2,3,4,5,8,9,10,11)
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
f_{1}=A B+B C+A C D & \bar{f}_{1}=\bar{A} \bar{B}+\bar{A} \bar{C}+\bar{B} \bar{C}+\bar{B} \bar{D} \\
f_{2}=A \bar{B}+\bar{B} C+\bar{B} D+A B \bar{C} & \bar{f}_{2}=A B+B C+\bar{A} \bar{B} \bar{C} \bar{D}
\end{array}
$$

We could use f_{l} and $f^{\prime} 2$ for an optimal solution

Question 3.

(10 Points)
A Moore Transition Detector synchronous sequential circuit has a single input x and a single output z. The input data is applied serially at the input x and the circuit produces a 1 in the output z whenever a transition from 0 to 1 or from 1 to 0 are detected at the applied input data. Draw the state diagram of this circuit. Assume the existence of an asynchronous reset input to reset the machine to a reset state. A sample input/output data is given below.
(NOTE: You are only required to draw the state diagram Nothing MORE)

Example:

Question 4.

It is required to design a synchronous sequential circuit that receives two serial inputs \mathbf{x} and \mathbf{y} and produces a serial output \mathbf{z} that computes the equation $\mathbf{z = 2 x} \mathbf{x} \mathbf{y}$. Draw the state diagram of this circuit assuming a Mealy model. Assume the existence of an asynchronous reset input to reset the machine to a reset state. Two samples of input/output data are given below.
(NOTE: You are only required to draw the state diagram Nothing MORE)

Question 5

a. The sequential circuit above is clocked _asynchronously_(synchronously / asynchronously) (1 Pt)
b. Draw the waveforms of signals A, B, C in response to the shown Clk signal assuming initial ABC value of 000. (4 Points)

c. Assuming a negligible setup and hold times, an inverter delay of $\mathbf{1} \mathbf{n s}$ and a delay from the clock active edge till the new flip flop output appearing of $\mathbf{4} \mathbf{n s}$, what is the maximum clock frequency at which the above circuit can operate? (3 Points)

Inverter delay is in parallel with the clock-to-Q delay (4ns), i.e. it does not add up.
Maximum delay is when the count makes transition from count 7 (111) to 0 (000) $\rightarrow 3$ successive transitions each 4ns delayed from the other \rightarrow Total delay $=3 \times 4 \mathrm{~ns}=12 \mathrm{~ns}$

Max Frequency $=1 /\left(12 \times 10^{-9}\right)=83.3$ Mega Hertz

Question 6

(15 Points)
It is required to design a digital calendar that counts days and months of the year. Given a clock signal with frequency 1 pulse/24 hours, you are required to design the following as part of this system:
a. Design a mod 12 months counter to count the months of the year (count $0 \rightarrow$ January ${ }^{1}$ up to Count $11 \rightarrow$ December). Use a mod 16 counter to build this months counter. Assume the mod 16 counter to have the following control inputs :

- CE "Count_Enable,
- Clr (synchronous clear), and
- Ld (parallel load), together with its associated inputs $\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$.

The counter should produce an output signal ($\mathbf{C o u t}_{\text {out }}$) which equals $\mathbf{1}$ only during the last month of the year. (3 Points)

Solution:

Mod 12 counter counts from $0 \rightarrow 11$

[^0]b. Design a days counter to count the days of the month. The counter has two input signals $x_{1} x_{0}$ which indicate the number of days in the current month as shown in the table below.

$\boldsymbol{x}_{\boldsymbol{I}} \boldsymbol{x}_{\boldsymbol{0}}$	\# of Days	Months	Month Count	
0	0	31	January, March, May, July, August, October,	
December	$0,2,4,6,7,9,11$			
0	1	30	April, June, September, November	$3,5,8,10$
1	0	29	February in leap years	1
1	1	28	February in ordinary years	1

The counter should produce an output signal ($\mathbf{C}_{\text {month }}$) which equals 1 only during the last day of the month. Design this days counter using a mod 32 binary counter having the same control inputs as the counter in part (a).
(5 Points)

c. Given the output ($m_{3} m_{2} m_{1} m_{0}$) of the months' counter of part (a) and an input signal \mathbf{L} that equals $\mathbf{1}$ only throughout leap years, derive the logic circuits which generate the signals \boldsymbol{x}_{1} and \boldsymbol{x}_{0} used by the days counter. (3 Points)
(Hint: Use a 4x16 decoder and any other needed parts)

d. Given the clock signal of frequency $\mathbf{1}$ pulse/24 hours, show how to assemble the parts designed in (a), (b) and (c) to build a synchronous counter which gives the current month of the year and the day of that month. Assume that the counter is reset to 0 at the beginning of each year. This assembled design should produce an output signal $\left(\boldsymbol{C}_{\text {year }}\right)$ which equals 1 only during the last day of the year. (4 Points)

Note: Use black boxes for the parts designed in (a), (b) and (c) showing only the interface input and output signals, various signal connections and the logic to generate $\boldsymbol{C}_{\text {year }}$

[^0]: ${ }^{1}$ The Gregorian year months are: January, February, March, April, May, June, July, August, September, October, November and December respectively.

