King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 132 (Spring 2013)

Final Exam

Monday May 19, 2014
8:00 a.m. - 10:30 a.m.

Time: 150 minutes, Total Pages: 10

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	10	
2	10	
3	11	
4	18	
5	15	
6	6	
Total	70	

Answer the following questions by filling the spaces with the correct answers:
i. Given a synchronous sequential circuit with 17 states, the minimum number of flip-flops required to implement the circuit is __5 flip flops and the number of unused states is \qquad states.
(2 points)
ii. For a 3-bit synchronous binary counter (outputs $\mathrm{Q}_{2}, \mathrm{Q}_{1}$ and Q_{0}), with input clock frequency of 32 MHZ , the frequency of Q_{0} is _ $\mathbf{1 6} \ldots \quad \mathrm{MHZ}$ and the frequency of Q_{2} is _ 4 _ MHZ.
(2 points)
iii. For the circuit shown rights, sketch the output waveforms at Q and y given the shown input waveforms of the clock signal clk and the input signal x.
(6 Points)

Question 2.

The sequential circuit shown below has a single output Z, an input x together with a Reset input to initialize the circuit. Note that the used D-FFs have direct/asynchronous Clear and Set inputs (shown in the figure as CLR and SET).

a. Is the circuit type Mealy or Moore? Why?
(2 point)

Mealy since Z depends on the input x.
b. Derive expressions for the D_{0} and D_{1} flip flop inputs and the external output Z . (3 points)

$$
\begin{gathered}
D_{0}=y_{1} y_{0}+\bar{x} \overline{y_{0}} \\
D_{1}=y_{0} \oplus x \\
Z=y_{1}+D_{1}
\end{gathered}
$$

c. Derive the state transition table of the circuit.

$\mathbf{P S}$		$\mathbf{N S}\left(\mathbf{y}_{\mathbf{1}}{ }^{+} \mathbf{y}_{\mathbf{0}}{ }^{+}\right)$			
$\left(\mathrm{y}_{1}\right.$	$\left.\mathrm{y}_{\mathbf{0}}\right)$	$x=0$	\mathbf{Z}		
0	0	0	1	1	0
0	1	1	0	0	0
1	1	1	1	0	1
1	0	0	1	1	0

d. What is the circuit initial state?

$$
y_{1} y_{0}=10
$$

Question 3.

A Moore odd parity checker circuit has a single input x and a single output signal error. The input consists of 4-bit chunks (3-data bits + a fourth parity bit) that are serially received at the input x. The error output is 1 whenever the received 4 -bit stream has even number of 1 's, and 0 otherwise. Draw the state diagram of this circuit.
(NOTE: You are only required to draw the state diagram Nothing MORE)

Question 4.

I. Given the following state table of a synchronous sequential circuit which has two inputs (X, Y) and one output (Z); is this circuit a Moore or Mealy design?
(1 points)

Mealy

Current State	\mathbf{X}	\mathbf{Y}	Next State	\mathbf{Z}
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

II. Consider a 4-bit counter with the following control inputs:

- Synchronous load (LD) that loads the inputs ($\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$) when high ($\mathrm{LD}=1$).
- Synchronous clear (CLR) that clears the counter when low (CLR=0).
- Enable input (E) that enables the counter when high ($\mathrm{E}=1$).
a. Add necessary gates to convert this counter to a decade counter, i.e. modulo 10 counter
(3 points)

b. Add necessary gates to give the above decade counter cascading capability and then connect these decade counters together to build a three decimal digits counter to count from 000 to 999 .

Page 6 of 10

III. Design a 4-bit counter using a 4-bit register with any needed logic gates/MSI components. The counter should have three synchronous control inputs. These inputs work as follows:

CLR	LD	up/(̄wn	Action with next effective edge
0	X	X	Clear
1	1	X	Parallel Load
1	0	0	Decrement by one
1	0	1	Increment by three

Question 5.
(15 Points)
Consider the following state transition table for a synchronous sequential circuit that multiplies a binary number by 3 ie. $\mathrm{Z}=3^{*} \mathrm{X}$. The circuit has a single input \mathbf{X}, a single output \mathbf{Z}, and two state variables $\mathbf{Y}_{\mathbf{0}}$, and $\mathbf{Y}_{\mathbf{1}}$. The states are encoded using binary codes $\mathbf{0 0}, \mathbf{0 1}, \mathbf{1 0}$.

$\mathbf{P S}\left(\mathbf{Y}_{\mathbf{1}} \mathbf{Y}_{\mathbf{0}}\right)^{\mathbf{t}}$	$\mathbf{N S}(\mathbf{Y 1}$		$\left.\mathbf{Y}_{\mathbf{0}}\right)^{\mathbf{t + 1}}$	\mathbf{Z}	
	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$	
0	0	0	0	0	
0	1	0	0	1	
1	0	0	1	0	

(i) Using D-FFs and minimal combinational logic, determine the equations for the DFF inputs and the output Z for this circuit and draw the resulting circuit. (6 points)

$$
D_{0}=\bar{x} Y_{1}+x \bar{Y}_{1} \bar{Y}_{0}
$$

$$
\begin{aligned}
n_{i} & =x y_{1}+x y_{0} \\
& =x\left(y_{1}+y_{0}\right)
\end{aligned}
$$

$$
z=\bar{x} y_{0}+x \bar{y}_{0}
$$

$$
=x \oplus y_{0}
$$

(ii) You are required to implement the above circuit using a ROM and a register.
a. What is the minimum size of the ROM (number of memory locations \times number of memory bits per location)?
(2 points)

$$
2^{3} \times 3=24 \text { bits }
$$

b. Draw the block diagram for such implementation. (Label all components inputs and outputs together with various signals)

c. Starting at the initial state $\mathbf{0 0}$, what is the sequence of ROM location addresses that will be accessed when applying the input sequence $\mathbf{X}=\mathbf{1 1 0 0}$ where $\mathbf{1}$ is applied first. (2 points)

d. Starting from address $\mathbf{0}$, fill in the following table to show the data stored in the first four memory locations in the ROM device
(2 points)
$A_{2} A_{1} A 0$
$y_{1}, y_{0} z$

Binary Address		Binary Stored Data		
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	1

Question 6.
The two functions F_{1} and F_{2} are to be implemented using the PLA shown below. Indicate the links to be programmed/connections in the PLA such that the number of product terms is minimized.

$$
\begin{aligned}
& \mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,1,2,4,6) \\
& \mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,1,3,5,7)
\end{aligned}
$$

It can be implemented using $\frac{3}{-}$ AND gates by either implementing:

$$
F_{1}=\bar{C}+\bar{A} \bar{B} \text { and } F_{2}=C+\bar{A} \bar{B}
$$

OR
$O R \quad \overline{F_{1}}=B C+A C$ and $F_{2}=B C+A C+\bar{A} \bar{Q}$ we brill mplement F_{1} \& F_{2}.

