King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 102 (Spring 2011)
Major Exam 1
Thursday March 17, 2011

Time: 90 minutes, Total Pages: 9

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	25	
2	20	
3	10	
4	20	
Total	75	

Question 1.

Fill in the Spaces: (Show all work needed to obtain your answer)

$$
[A+(B \cdot(C+D))] \cdot \overline{B+C}
$$

a. The expressions $\mathrm{A}(\mathrm{B}+\mathrm{CD})+\overline{\mathrm{BC}}$ and \qquad are duals
b. For the logic function $F(W, X, Y, Z)$, minterm $m_{s}=X \bar{Y} Z$. \qquad (True/False)
c. Counting the number of hours in one day in BCD requires a minimum of \qquad (how many) bits.

$$
24
$$

d. The Boolean function $\mathrm{F}(\mathrm{x}, \mathrm{y})=\Sigma \mathrm{m}(1,3)$ simplifies to one literal as \qquad .

$$
m_{01}+m_{11}=\bar{x} y+x y
$$

$$
m_{1010} m_{1101} m_{0011}=y(x+\bar{x})
$$

e. $F(A, B, C, D)=A \bar{B} C \bar{D}+A B \bar{C} D+\bar{A} \bar{B} C D$ is represented in the canonical shorthand form as $F(A, B, C, D)=\Sigma m(3,10,13)$.
The complement $\bar{F}(A, B, C, D)=\Pi M(3,10,13$
f. Assume some computer hardware that performs integer arithmetic in 5 bits. The largest decimal number that can be added to 12 without causing an incorrect result is \qquad 19 .

$$
\left(2^{5}-1\right)^{7^{31}-12}=19
$$

g. The decimal value of the largest 3-bit binary fraction is ${ }^{\circ} .875$.

$$
\begin{array}{ll}
0.111 & 0.5 \\
& 0.25 \\
& 0.125
\end{array}
$$

h. One factor that may limit gate fan out is \qquad .
propagation delay, current drive
i. The largest 2-digit octal number has the decimal value \qquad .

$$
77)_{8}=7+7 \times 8
$$

j. Using gates having propagation delay of 5 ns each, the input-to-output delay for a logic circuit that directly implements the logic function XYZ + WV will be \qquad ns.

$$
5+5
$$

k. To implement the function $\mathrm{F}(\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Pi(2,14,29)$ as a product of maxterms, we need 3 \qquad (how many) OR gates, each having \qquad (how many) inputs.

1. To represent any integer greater than 1 , the binary system requires the largest number of digits among all number systems \qquad (True/False)
m. The Hi-Z logic state becomes relevant when connecting: \qquad iii (select one)
i) Inputs of logic gates together
ii) An output of a logic gate to inputs of other logic gates
iii) Outputs of logic gates together
a. Using up to 4-bit fractional accuracy, convert (103.4375) ${ }_{10}$ to: (8 Points)

4 pts. i. Binary
2 pts. ii. Octal
2 pts.iii. Hexadecimal

$$
\begin{aligned}
& \text { i. } \begin{array}{rr|r}
103 & \\
51 & 1 \\
25 & 1 \\
12 & 1 \\
6 & 0 \\
3 & 0 \\
1 & 1 \\
0 & 1
\end{array} \\
& \Rightarrow(103.4375)_{10}=(1100111.0111)_{2} \\
& \text { ii. }(\underbrace{001} 111.011 \underbrace{100})_{2}=(147.34)_{8} \\
& \text { iii. }(\underbrace{0110} \underbrace{0111} \cdot 011)_{2}=(67.7)_{16}
\end{aligned}
$$

b. Find the result of the following operations:

2pts. i. $\quad(37.4)_{16}+(59.7)_{16}$
3 pts. ii. $\quad(37.4)_{8}+(59.7)_{16}$
2 pts. iii. $\quad(101)_{2} \times(110)_{2}$
pts. iv. $(111100)_{2}-(100011)_{2}$

$$
\text { i. } \begin{aligned}
& (37.4)_{16} \\
+ & \frac{(59.7)_{16}}{(90 . B)_{16}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii. } \left.\quad(59.7)_{16}=(01011001.0111)_{2}\right)(37.4)_{8}=(011111.100)_{2} \\
& =(131.34)_{8} \\
& \Rightarrow \quad(37.4)_{8} \\
& +\frac{(131.34)_{8}}{(170.74)_{8}} \\
& \Rightarrow \quad(1 F .8)_{16} \\
& \frac{+(59.7)_{16}}{(78 . F)_{16}}
\end{aligned}
$$

or in binary: $(1111000.1111)_{2}$

$$
\text { iii. } \begin{aligned}
&(101)_{2} \\
& \frac{(110)_{2}}{1000} \\
& i v . \frac{(11110)_{2}}{(101100)_{2}} \\
& \frac{(100011)_{2}}{(01001)_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& (6 \mathrm{~A})_{r}=(86)_{14}=8 \times 14+6=(118)_{10} \\
\Rightarrow & 6 r+10=118 \\
\Rightarrow & 6 r=108 \\
\Rightarrow & r=18
\end{aligned}
$$

Question 3.

Prove the identity of each of the following Boolean functions using algebraic manipulation. Start with the left-hand side expression and derive from it the right-hand side expression.
(i) $\bar{a} \bar{c}+a d+\bar{b} \bar{c} d=\bar{a} \bar{c}+a d$

A`C` + A D + B C` D = A`C` + A D + B C` D + C` D (by consensus between A`C`+ A D) \(=A` C^{`}+A D+C^{`} D\) (by absorption of B C` D in C`D)
$=\mathrm{A}^{`} \mathrm{C}^{`}+\mathrm{A} \mathrm{D}$ (by consensus between A`C` + A D)
Another Solution:
$\mathrm{A}^{`} \mathrm{C}^{`}+\mathrm{AD}+\mathrm{B} \mathrm{C}^{`} \mathrm{D}=\mathrm{A}^{`} \mathrm{C}^{`}+\mathrm{AD}+\mathrm{B} \mathrm{C}^{`} \mathrm{D}\left(\mathrm{A}+\mathrm{A}^{`}\right)=\mathrm{A}^{`} \mathrm{C}^{`}+\mathrm{A} \mathrm{D}+\mathrm{ABC} \mathrm{C}^{`} \mathrm{D}+\mathrm{A}^{`} \mathrm{~B} \mathrm{C}^{`} \mathrm{D}$ = A`C` + A D (by absorption of A B C` D in AD and absorption of A` B C` D in A` C`)

$$
\text { (ii) }(\pi[\varepsilon+d]+c[b+\pi]+\pi \pi)=a d(b+c)
$$

$=\left(a+c d^{`}\right)\left(c^{`}+b d\right)(c+d)(b y$ Demogan's Law)
$=\left(\mathbf{a} \mathbf{c}^{`}+\mathbf{a b d}\right)(\mathbf{c}+\mathbf{d})$ (by distributive law)
$=(\mathbf{a c} \mathbf{c} \mathbf{d}+\mathbf{a b c d}+\mathbf{a b d})(b y$ distributive law)
$=a c ` d+a b d$ (by absorption of abcdin abd)
$=\mathbf{a d}\left(c^{`}+b\right)$ (by distributive law)

Question 4.
a. For the circuit shown, the propagation delay (in nano-seconds) for each gate is listed in the table below.

Gate	Propagation Delay (in Nan ${ }^{1}$-Seconds)
G1	1 ns
G2	1.5 ns
G3	4 ns
G4	2.5 ns
G5	2 ns

(i) What is the Boolean expression of the output function F

$$
F=(x+z)(x+z)
$$

(ii) What is the worst case path delay for this circuit Path $1 G 1-G_{3}-G_{5}=7 \mathrm{~ns}$

$$
\text { w.c. path delay }=7 \mathrm{~ns}
$$

$$
\text { Path } 2 G_{2}-G_{4}-G_{6}=6 \mathrm{~ns}
$$

b. Express the following function in the sum of minterms form $\left\{\Sigma\left(\mathrm{m}_{i}\right)\right\}$ and the product of Maxterms form $\left\{\boldsymbol{\Pi}\left(\mathrm{M}_{i}\right)\right\}$

$$
\begin{aligned}
& F(A, B, C, D)=A^{\prime} C\left(B^{\prime}+D\right)=\bar{A} C \bar{B}+\bar{A} C D m_{3} \\
& =\bar{A} C \bar{B}(D+\bar{D})+\bar{A} C D(B+\bar{B})=\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} C D+ \\
& \frac{\bar{A} \bar{B} C D}{m_{3}}+\frac{\bar{A} B C D}{m_{7}} \\
& \text { (3) }=\pi M(0,1,4,5,6,8,9,10,11,12,13,14,15) \\
& \text { (3) }=\sum m(2,3,7)
\end{aligned}
$$

${ }^{1}$ Nano $=10^{-9}$
c. For the Boolean function $\boldsymbol{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(\mathrm{m} 0, \mathrm{~m} 2, \mathrm{~m} 5, \mathrm{~m} 7, \mathrm{~m} 11, \mathrm{~m} 15$,$) , (5 Points)$
i. Write the corresponding algebraic Boolean expression $F(A, B, C, D)$ (without simplification)

$$
\begin{align*}
F= & \bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} C \bar{D}+\bar{A} B \bar{C} D+\bar{A} B C D \\
& +\bar{A} \bar{B} C D+A B C D \tag{2}
\end{align*}
$$

ii. What is the product of Maxterms form of $F\left\{\boldsymbol{\Pi}\left(\mathrm{M}_{i}\right)\right\}$?

$$
F=\pi \dot{M}(1,3,4,6,8,9,10,12,13,14)
$$

iii. Write the corresponding product of Maxterms Boolean expression $\boldsymbol{F}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})$

$$
F=(A+B+C+\bar{D})(A+B+\bar{C}+\bar{D})(A+\bar{B}+C+D) \bar{B}+\bar{C}+D)(\bar{A}+B+C+D)
$$

(2) $(\bar{A}+B+C+\bar{D})(\bar{A}+B+\bar{C}+D)(\bar{A}+\bar{B}+C+D)(\bar{A}+\bar{B}+\bar{C}+\bar{D})$

$$
(\bar{A}+\bar{B}+\bar{C}+D)
$$

d. Using Boolean Algebra, put the sum of minterms function $\boldsymbol{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ into its simplest
form; where $\boldsymbol{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})=x^{\prime} y^{\prime} z^{\prime}+x y^{\prime} z+x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z$
(4 Points)
(4)

$$
\begin{aligned}
& =\bar{x} \bar{z}(\underbrace{(\bar{y}+y)}_{1}+\bar{y} z(\underbrace{x+\bar{x})}_{1} \\
& =\bar{x} \bar{z}+\bar{y} z
\end{aligned}
$$

