
COE 202, Term 162

 Digital Logic Design

Assignment# 4 Solution

Due date: Sunday, May 14

Q.1. It is required to design a synchronous sequential circuit that receives a serial input X that

produces 1 when the input sequence is either {1101} (i.e., 1 followed by 1 followed by 0

followed by 1) or {0101} (i.e., 0 followed by 1 followed by 0 followed by 1) assuming

overlapping sequences. Assume the existence of an asynchronous reset input to reset the

machine to a reset state. The following is an example of an input/output stream:

Examples:

Q.2. Input Q.3. X Q.4. 1 0 0 1 0 1 1 0 1 0 1 0

Q.5. Output Q.6. Z Q.7. 0 0 0 0 0 1 0 0 1 0 1 0

(i) Derive the state diagram of the circuit assuming a Mealy model.

(ii) Implement your design using D flip flops with minimal number of flip flops and

combinational logic.

We need two D-FFs and we will assume the use of the state variables Y1 and Y0.

We will assume the following state encoding: S0=00, S1=01, S2=10, and S3=11.

PS (Y1 Y0)
t
 NS (Y1 Y0)

t+1
 Z

 X = 0 X = 1 X = 0 X = 1

0 0 0 1 0 1 0 0

0 1 0 1 1 0 0 0

1 0 1 1 1 0 0 0

1 1 0 1 1 0 0 1

Z = Y1 Y0 X

Y1+ = X Y0 + Y1 Y0'

Y0+ = X' + Y1' Y0'

(iii) Write a structural Verilog model that models your implemented sequential circuit

by modeling the D Flip-Flops and instantiating them and modeling the

combinational part using either assign statement or gate primitives.

module dff2 (output reg q, output q_bar, input data, set, reset, clk);

assign q_bar = !q;

always @(posedge clk, posedge set, posedge reset) // Asynchronous set/reset

 if (reset == 1'b1) q <= 0;

 else if (set == 1'b1) q <=1;

 else q <= data;

endmodule

module Ass4Struct(output Z, input X, Reset, CLK);

dff2 F0 (Y0, Y0b, DY0, 1'b0, Reset, CLK);

dff2 F1 (Y1, Y1b, DY1, 1'b0, Reset, CLK);

assign Z = Y1 & Y0 & X;

assign DY1 = Y0 & X | Y1 & Y0b;

assign DY0 = ~X | Y1b & Y0b;

endmodule

(iv) Write a test bench that tests your structural Verilog model in (iii) using the given

input sequence. Verify that your circuit produces the correct output by including

the generated waveform from simulation.

module Ass4_Test();

wire Z;

reg X, Reset, CLK;

Ass4Struct M1 (Z, X, Reset, CLK);

initial begin

CLK = 0;

forever

#50 CLK = ~ CLK;

end

initial begin

Reset=1;

@(negedge CLK) Reset=0; X=1;

@(negedge CLK) X=0;

@(negedge CLK) X=0;

@(negedge CLK) X=1;

@(negedge CLK) X=0;

@(negedge CLK) X=1;

@(negedge CLK) X=1;

@(negedge CLK) X=0;

@(negedge CLK) X=1;

@(negedge CLK) X=0;

@(negedge CLK) X=1;

@(negedge CLK) X=0;

end

endmodule

As can be seem from the simulation waveform below, the correct output sequence is

obtained for the structural model.

(v) Write a behavioral Verilog model that models your state diagram in (i).

module Ass4Beh (output reg Z, input X, Reset, CLK);

parameter S0 = 2'b00, S1=2'b01, S2=2'b10, S3=2'b11;

reg [1:0] state, next_state;

always @(posedge CLK, posedge Reset)

 if (Reset) state <= S0; else state <= next_state;

always @(state, X) begin

Z=0;

case (state)

 S0:next_state=S1;

 S1: if (X) next_state=S2; else next_state=S1;

 S2: if (X) next_state=S2; else next_state=S3;

 S3: if (X) begin Z=1; next_state=S2; end else next_state=S1;

 endcase

end

endmodule

(vi) Use the test bench developed in (iv) to test the correctness of your behavioral

model developed in (v). Verify that your behavioral model produces the correct

output by including the generated waveform from simulation.

module Ass4_TestB();

wire Z;

reg X, Reset, CLK;

Ass4Beh M1 (Z, X, Reset, CLK);

initial begin

CLK = 0;

forever

#50 CLK = ~ CLK;

end

initial begin

Reset=1;

@(negedge CLK) Reset=0; X=1;

@(negedge CLK) X=0;

@(negedge CLK) X=0;

@(negedge CLK) X=1;

@(negedge CLK) X=0;

@(negedge CLK) X=1;

@(negedge CLK) X=1;

@(negedge CLK) X=0;

@(negedge CLK) X=1;

@(negedge CLK) X=0;

@(negedge CLK) X=1;

@(negedge CLK) X=0;

end

endmodule

As can be seem from the simulation waveform below, the correct output sequence is

obtained for the behavioral model.

