COE 202, Term 141

Digital Logic Design

Assignment# 4

Due date: Sunday, Dec. 21

Q.1. It is required to design a synchronous sequential circuit that receives a serial input X and produces a serial output Z that computes the equation Z=3*X-2. Assume that the inserted input values of X will be such that Z will always be positive. Assume the existence of an asynchronous reset input to reset the machine to a reset state. The following are a set of some input and output streams:

Example:

Input	X	10100
Output	Z	10110
Input	X	11100
Output	Z	1 1 0 0 1

- (i) Derive the state diagram of the circuit assuming a **Mealy** model.
- (ii) Implement your design using D flip flops with minimal number of flip flops and combinational logic.
- (iii) Model your design in logic works.
- (iv) Test your design and verify its correctness by simulation. Show snapshots of your simulation to demonstrate its correctness

This assignment can be solved based on a group of two students. Include snapshots of simulation output to illustrate the correctness of your circuit. Submit your solution as a word document along with the circuit in one zipped file.