COE 202, Term 151

Digital Logic Design

Assignment\# 3 Solution

Due date: Wednesday, Nov. 18
Q.1. It is required to design a circuit that receives two 4-bit signed numbers in 2's complement representation $\mathbf{A}=\mathbf{A}_{\mathbf{3}} \mathbf{A}_{\mathbf{2}} \mathbf{A}_{\mathbf{1}} \mathbf{A}_{\mathbf{0}}, \mathbf{B}=\mathbf{B}_{\mathbf{3}} \mathbf{B}_{\mathbf{2}} \mathbf{B}_{\mathbf{1}} \mathbf{B}_{\mathbf{0}}$ and produces 5-bit output $\mathbf{C}=\mathbf{C}_{\mathbf{4}} \mathbf{C}_{\mathbf{3}} \mathbf{C}_{\mathbf{2}} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{0}}$. The circuit implements the following functions based on the values of the three selection inputs: S1, S1 and S0.

S2 S1 S0	Function
000	$\mathrm{C}=\mathrm{A}+\mathrm{B}$
001	$\mathrm{C}=\mathrm{A}-\mathrm{B}$
010	$\mathrm{C}=\mathrm{A}+1$
011	$\mathrm{C}=\mathrm{A}+2$
100	$\mathrm{C}=\mathrm{A}-1$
101	$\mathrm{C}=\mathrm{A}-2$
110	$\mathrm{C}=2 \mathrm{~A}$
111	$\mathrm{C}=2 \mathrm{~B}$

(i) Show the block diagram design of your circuit using MSI components like Adder, Multiplexor, as needed. Use only one adder in your solution.

(ii) Model your design in Verilog by modeling each component separately i.e. adder, MUX, etc. and then instantiating these components to model your circuit.

```
module Ass3 (input [3:0] A, B, input s2, s1, s0, output [4:0]C);
wire sel;
wire [3:0] T1, T2, T3;
assign sel = s2 & s1 & s0;
mux2x1 #(4) M1 (A, B, sel, T1);
mux2x1 #(4) M2 (B, ~B, s0, T2);
mux4x1 #(4) M3 (T2, 4'b0001, 4'b1110, T1, s2, s1, T3);
assign Cin = s0 & ~s2 | s2 & ~s1 & ~s0;
adder #(5) M4 (Cout, C, {T1[3], T1}, {T3[3], T3}, Cin);
endmodule
```

```
module mux4x1 #(parameter n = 1) (input [n-1:0] a, b, c, d, input s1,
s0, output reg [n-1:0] y);
    always@(s1, s0, a, b, c, d) begin
    case ({s1, s0})
            2'b00: y=a;
            2'b01: y=b;
            2'b10: y=c;
            2'b11: y=d;
        endcase
    end
endmodule
module mux2x1 #(parameter n = 1) (input [n-1:0] a, b, input select,
output [n-1:0] c);
    assign c = (select ? b : a);
endmodule
module adder #(parameter n = 4)
(output cout, output [n-1:0] sum, input [n-1:0] a, b, input cin);
    assign {cout, sum} = a + b + cin;
endmodule
```

(iii) Write a Verilog test bench to test your design and verify its correctness by simulation. Show snapshots of your simulation to demonstrate its correctness. For each function, test at least 2 input combinations of your choice to demonstrate correct functionality.

```
module Ass3_Test();
    wire [4:0] C;
    reg [3:0] A, B;
    reg [2:0] S;
    Ass3 M1 (A, B, S[2], S[1], S[0], C);
```

 initial begin
 \(A=7 ; B=3 ; S=0 ;\)
 \#10 S = 1;
 \#10 S = 2;
 \#10 S = 3;
 \#10 S = 4;
 \#10 S = 5;
 \#10 S = 6;
    ```
    #10 S = 7;
    #10 A = -8; B = -7; S = 0;
    #10 S = 1;
    #10 S = 2;
    #10 S = 3;
    #10 S = 4;
    #10 S = 5;
    #10 S = 6;
    #10 S = 7;
    end
endmodule
```

Simulation Results:

| S | Mess | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pm \ /$ Ass Test/A | 8 | 7 | | | | | | | | 8 | | | | | | | |
| $\pm\rangle$ Ass3TestB | - 7 | 3 | | | | | | | | 1.7 | | | | | | | |
| $\pm\rangle$ Ass3 Test/C | - 14 | 10 | 4 | 8 | 19 | 1 | 5 | 14 | 1 | 4.15 | - 1 | . 7 | / 6 | , | 10 | 16 | . 14 |
| + $+1 / \mathrm{Ass} 3_{-} \mathrm{Test/S}$ | 111 | 00 | | 010 | 011 | 100 | 101 | 1110 | 111 | 100 | 001 | 010 | 011 | 1100 | 101 | 110 | 111 |
| | | | | | | | | | | | | | | | | | |

