COE 202, Term 112

Digital Logic Design

Assignment\# 3

Due date: Sat. April 21
Q.1. It is required to design a 4-bit arithmetic and logic unit that has two 4-bit inputs $\mathbf{A}=\mathbf{A}_{3} \mathbf{A}_{\mathbf{2}} \mathbf{A}_{1} \mathbf{A}_{\mathbf{0}}$ and $\mathbf{B}=\mathbf{B}_{3} \mathbf{B}_{2} \mathbf{B}_{1} \mathbf{B}_{0}$ and one 5 -bit output $\mathbf{C}=\mathbf{C}_{\mathbf{4}} \mathbf{C}_{\mathbf{3}} \mathbf{C}_{\mathbf{2}} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{0}}$. The circuit implements the following functions based on the values of the three selection inputsS2, S1 and S0.

S2 S1 S0	Function
000	$\mathrm{C}=\mathrm{A}+\mathrm{B}$
001	$\mathrm{C}=\mathrm{A}-\mathrm{B}$
010	$\mathrm{C}=\mathrm{A}+1$
011	$\mathrm{C}=\mathrm{A}-1$
100	$\mathrm{C}=\mathrm{A}$ and B
101	$\mathrm{C}=\mathrm{A}$ or B
110	$\mathrm{C}=\mathrm{A}$ xor B
111	$\mathrm{C}=\mathrm{A}$ xnor B

(i) Show the block diagram design of your circuit using MSI components like Adder, Multiplexor, as needed.
(ii) Model your design in logic works.
(iii) Test your design and verify its correctness by simulation. Show snapshots of your simulation to demonstrate its correctness. For each function, test at least 2 input combinations of your choice to demonstrate correct functionality.

Save each part in a separate circuit file. Include snapshots of simulation output to illustrate the correctness of your circuit. Submit your solution as a word document along with the circuits in one zipped file.

