COE 202, Term 151

Digital Logic Design

Assignment#3

Due date: Wednesday, Nov. 18

Q.1. It is required to design a circuit that receives two 4-bit signed numbers in 2's complement representation A=A₃A₂A₁A₀, B=B₃B₂B₁B₀ and produces 5-bit output C= C₄C₃C₂C₁C₀. The circuit implements the following functions based on the values of the three selection inputs: S1, S1 and S0.

S2 S1 S0	Function
0 0 0	C = A + B
0 0 1	C = A - B
0 1 0	C = A + 1
0 1 1	C = A + 2
1 0 0	C = A - 1
1 0 1	C = A - 2
1 1 0	C = 2A
1 1 1	C = 2B

- (i) Show the block diagram design of your circuit using MSI components like Adder, Multiplexor, as needed. Use only one adder in your solution.
- (ii) Model your design in Verilog by modeling each component separately i.e. adder, MUX, etc. and then instantiating these components to model your circuit.
- (iii) Write a Verilog test bench to test your design and verify its correctness by simulation. Show snapshots of your simulation to demonstrate its correctness. For each function, test at least 2 input combinations of your choice to demonstrate correct functionality.

This assignment can be solved based on a group of two students. Include snapshots of simulation output to illustrate the correctness of your circuit. Submit your solution as a word document along with the circuit in one zipped file.