COE 202, Term 162

Digital Logic Design

Assignment\# 2 Solution

Due date: Sunday, April 9
Q.1. It is required to design an iterative combinational circuit that computes the equation $\mathrm{Z}=2 * \mathrm{X}-\mathrm{Y}$, where X and Y are n -bit unsigned numbers.
(i) Determine the number of inputs and outputs needed for your 1-bit cell.

This circuit requires the following 3 pieces of information, which can be encoded using 2 signals:

- No carry or borrow $(\mathrm{C}=0, \mathrm{~B}=0)$
- Carry = $1(\mathrm{C}=1, \mathrm{~B}=0)$
- Borrow $=1(\mathrm{C}=0, \mathrm{~B}=1)$

(ii) Derive the truth table of your 1-bit cell.

Bin	Cin	X	Y	Bout	Cout	Z
0	0	0	0	0	0	0
0	0	0	1	1	0	1
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	0	0	0
0	1	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	0	1	0	1
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	0	0	0
1	1	0	0	X	X	X
1	1	0	1	X	X	X
1	1	1	0	X	X	X
1	1	1	1	X	X	X

(iii) Derive minimized equations for your 1-bit using K-Map method.

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	0	0	1	1
$\mathbf{1}$	3	0	0	
$\mathbf{0 1}$	1	4	0	5
0	0	16		
$\mathbf{1 1}$	$? 12$	$? 13$	$? 15$	$?$
$\mathbf{1 0}$	$\mathbf{1}$	8	0	9

$\mathrm{Z}=$ Bin' $^{\prime} \operatorname{Cin}{ }^{\prime} \mathrm{Y}+\mathrm{Cin} \mathrm{Y}^{\prime}+$ Bin $\mathrm{Y}^{\prime}=$ Bin' $\operatorname{Cin}{ }^{\prime} \mathrm{Y}+\mathrm{Y}^{\prime}(\mathrm{Cin}+\mathrm{Bin})=\mathrm{Y} \oplus(\mathrm{Cin}+\mathrm{Bin})$

	00	01	11	10
00	00	01	0	12
01	04	05	1	1
11	$? 12$? 13	? 15	$?$
10	08	09	01	0

Cout $=\operatorname{Cin} \mathrm{X}+$ Bin' $^{\prime} \mathrm{X} \mathrm{Y}^{\prime}$

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	00	1	1	0
3	0	2		
$\mathbf{0 1}$	0	4	0	5
0	7	06		
$\mathbf{1 1}$	$? 12$	$? 13$	$? 15$	$? 14$
$\mathbf{1 0}$	$\mathbf{1}$	8	$\mathbf{1}$	0_{1}

Bout $=\operatorname{Bin} \mathrm{X}^{\prime}+\operatorname{Cin} \mathrm{X}^{\prime} \mathrm{Y}$
(iv) Write a Verilog model for modeling your 1-bit cell by using an assign statement for each output.
module Cell2XMY (output Bout, Cout, Z, input Bin, Cin, X, Y);
$\operatorname{assign} \mathrm{Z}=\mathrm{Y}^{\wedge}(\mathrm{Cin} \mid \operatorname{Bin})$;
assign Cout $=\operatorname{Cin} \& X \mid \sim \operatorname{Bin} \& X \& \sim Y$;
assign Bout $=\operatorname{Bin} \& \sim \mathrm{X} \mid \sim \operatorname{Cin} \& \sim \mathrm{X} \& \mathrm{Y}$;
endmodule
(v) Write a Verilog model for modeling a 4-bit circuit based on the 1-bit model you have.
module D2XMY (output Bout, Cout, output [3:0] Z, input [3:0] X, Y);
wire [2:0] C, B;
Cell2XMY M1 (B[0], C[0], Z[0], 1'b0, 1'b0, X[0], Y[0]);
Cell2XMY M2 (B[1], C[1], Z[1], B[0], C[0], X[1], Y[1]);
Cell2XMY M3 (B[2], C[2], Z[2], B[1], C[1], X[2], Y[2]);
Cell2XMY M4 (Bout, Cout, Z[3], B[2], C[2], X[3], Y[3]);
endmodule
(vi) Write a Verilog test bench to test the correctness of your design for the following input values: $\{\mathrm{X}=1, \mathrm{Y}=1\}, \quad\{\mathrm{X}=3, \mathrm{Y}=2\},\{\mathrm{X}=5, \mathrm{Y}=1\},\{\mathrm{X}=4, \mathrm{Y}=5\}$, and $\{\mathrm{X}=15$, $\mathrm{Y}=15$ \}.
module D2XMY_Test();
reg [3:0] X, Y;
wire Bout, Cout;
wire [3:0] Z;
D2XMY M1 (Bout, Cout, Z, X, Y);
initial begin
$\mathrm{X}=4 \mathrm{~b} 0001 ; \mathrm{Y}=4$ 'b0001;
\#100 X=4'b0011; Y=4'b0010;
\#100 X=4'b0101; Y=4'b0001;
\#100 X=4'b0100; Y=4'b0101;
\#100 X=4'b1111; Y=4'b1111;
end
endmodule

The simulations results are shown below and it is clear that the circuit is implementing the function $\mathrm{Z}=2 * \mathrm{X}-\mathrm{Y}$ correctly.

\pm /- /D2XMY_Test/X	1111	0001	0011	0101	0100	1111
\pm /D2XMY_Test/Y	1111	0001	0010	0001	0101	1111
$\pm \downarrow / \mathrm{D} 2 \mathrm{XMY}$ _Test/Z	1111	0001	0100	1001	0011	1111
4 /D2XMY_Test/Cout	St0					
4/D2XMY_Test/Bout	St0					

