COE 202, Term 162

Digital Logic Design

Assignment# 2 Solution

Due date: Sunday, April 9

- Q.1. It is required to design an iterative combinational circuit that computes the equation Z=2*X-Y, where X and Y are n-bit unsigned numbers.
 - (i) Determine the number of inputs and outputs needed for your 1-bit cell.

This circuit requires the following 3 pieces of information, which can be encoded using 2 signals:

- No carry or borrow (C=0, B=0)
- Carry = 1 (C=1, B=0)
- Borrow = 1 (C=0, B=1)

(ii) Derive the truth table of your 1-bit cell.

Bin	Cin	X	Y	Bout	Cout	Z
0	0	0	0	0	0	0
0	0	0	1	1	0	1
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	0	0	0
0	1	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	0	1	0	1
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	0	0	0
1	1	0	0	X	X	X
1	1	0	1	X	X	X
1	1	1	0	X	X	X
1	1	1	1	X	X	X

(iii) Derive minimized equations for your 1-bit using K-Map method.

	00	01	11	10	
00	0 0	1 1	1 3	0 2	
01	1 4	0 5	0 7	1 6	
11	? 12	? 13	? 15	? 14	
10	1 8	0 9	011	1 10	

 $Z = Bin' \ Cin' \ Y + Cin \ Y' + Bin \ Y' = Bin' \ Cin' \ Y + Y' \ (Cin + Bin) = Y \oplus (Cin + Bin)$

	00	01	11	10
00	0 0	0 1	0 3	1 2
01	0 4	0 5	17	1 6
11	? 12	? 13	? 15	? 14
10	0 8	0 9	011	0 10

Cout = Cin X + Bin' X Y'

	00	01	11	10
00	0 0	1 1	0 3	0 2
01	0 4	0 5	0 7	0 6
11	? 12	? 13	? 15	? 14
10	1 8	1 9	011	0 10

Bout = Bin X' + Cin' X' Y

(iv) Write a Verilog model for modeling your 1-bit cell by using an assign statement for each output.

module Cell2XMY (output Bout, Cout, Z, input Bin, Cin, X, Y);

$$\begin{array}{l} assign \ Z = Y \land \ (Cin \mid Bin); \\ assign \ Cout = Cin \ \& \ X \mid \ \sim Bin \ \& \ X \ \& \ \sim Y; \end{array}$$

```
assign Bout = Bin & \simX | \simCin & \simX & Y;
```

endmodule

(v) Write a Verilog model for modeling a 4-bit circuit based on the 1-bit model you have.

```
module D2XMY (output Bout, Cout, output [3:0] Z, input [3:0] X, Y);
```

```
wire [2:0] C, B;
```

```
Cell2XMY M1 (B[0], C[0], Z[0], 1'b0, 1'b0, X[0], Y[0]);
Cell2XMY M2 (B[1], C[1], Z[1], B[0], C[0], X[1], Y[1]);
Cell2XMY M3 (B[2], C[2], Z[2], B[1], C[1], X[2], Y[2]);
Cell2XMY M4 (Bout, Cout, Z[3], B[2], C[2], X[3], Y[3]);
```

endmodule

(vi) Write a Verilog test bench to test the correctness of your design for the following input values: $\{X=1,Y=1\}$, $\{X=3, Y=2\}$, $\{X=5, Y=1\}$, $\{X=4, Y=5\}$, and $\{X=15, Y=15\}$.

```
module D2XMY_Test();
```

```
reg [3:0] X, Y;
wire Bout, Cout;
wire [3:0] Z;
```

D2XMY M1 (Bout, Cout, Z, X, Y);

```
initial begin
X=4'b0001; Y=4'b0001;
#100 X=4'b0011; Y=4'b0010;
#100 X=4'b0101; Y=4'b0001;
#100 X=4'b0100; Y=4'b0101;
#100 X=4'b1111; Y=4'b1111;
end
endmodule
```

The simulations results are shown below and it is clear that the circuit is implementing the function Z=2*X-Y correctly.

.111	0001	0011	0101	0100	1111
111	0001	0010	0001	0101	1111
111	0001	0100	1001	0011	1111
St0					
St0					
	111 111 t0	0001 111 0001 to	0001 0010 0001 0100	0001 0010 0001 0001 0100 1001	0001 0010 0001 0101 0001 0100 1001 0011