COE 202, Term 151

Digital Logic Design

Assignment\# 2 Solution

Due date: Sunday, Oct. 31
Q.1. It is required to design an iterative combinational circuit that computes the equation $\mathrm{Z}=3^{*} \mathrm{X}-\mathrm{Y}$, where X and Y are n -bit unsigned numbers.
(i) Determine the number of inputs and outputs needed for your 1-bit cell.

The meaning of the values of $\mathrm{C1}_{\mathrm{i}-1}$ and $\mathrm{C}_{\mathrm{i}-1}$ is given in the table below:

$\mathrm{C} 1_{i-1}$	$\mathrm{C} 0_{\mathrm{i}-1}$	Meaning
0	0	There is no carry or borrow
0	1	There is a carry of 1
1	0	There is a carry of 2
1	1	There is a borrow of 1

(ii) Derive the truth table of your 1-bit cell.

$\mathrm{C} 1_{\mathrm{i}-1}$	$\mathrm{C} 0_{\mathrm{i}-1}$	X_{i}	Y_{i}	C_{i}	$\mathrm{C} 0_{\mathrm{i}}$	Z_{i}
0	0	0	0	0	0	0
0	0	0	1	1	1	1
0	0	1	0	0	1	1
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	0	0	0
0	1	1	0	1	0	0
0	1	1	1	0	1	1
1	0	0	0	0	1	0
1	0	0	1	0	0	1
1	0	1	0	1	0	1
1	0	1	1	1	0	0
1	1	0	0	1	1	1
1	1	0	1	1	1	0
1	1	1	0	0	1	0
1	1	1	1	0	0	1

(iii) Derive minimized equations for your 1-bit using K-Map method.

	00	01	11	10
00	00	11	03	12
01	14	05	17	06
11	112	013	115	014
10	08	19	011	110

$$
\begin{aligned}
\mathrm{Zi} & =\mathrm{C} 0 \mathrm{i}-1 \mathrm{Xi} \mathrm{i}^{\prime} \mathrm{i}^{\prime}+\mathrm{C} 0 \mathrm{i}-1 \mathrm{Xi} \mathrm{Yi}+\mathrm{C} 0 \mathrm{i}-1^{\prime} \mathrm{Xi} \mathrm{i}^{\prime} \mathrm{Yi}+\mathrm{C} 0 \mathrm{i}-1^{\prime} \mathrm{Xi} \mathrm{Yi}^{\prime} \\
& =\mathrm{C} 0 \mathrm{i}-1\left(\mathrm{Xi} \mathrm{i}^{\prime} \mathrm{Yi}^{\prime}+\mathrm{Xi} \mathrm{Yi}\right)+\mathrm{C} 0 \mathrm{i}-1^{\prime}\left(\mathrm{Xi} i^{\prime} \mathrm{Yi}+\mathrm{Xi} \mathrm{Yi}^{\prime}\right) \\
& =\mathrm{C} 0 \mathrm{i}-1(\mathrm{Xi} \oplus \mathrm{Yi})^{\prime}+\mathrm{C} 0 \mathrm{i}-1^{\prime}(\mathrm{Xi} \oplus \mathrm{Yi}) \\
& =\mathrm{C} 0 \mathrm{i}-1 \oplus \mathrm{Xi} \oplus \mathrm{Yi}
\end{aligned}
$$

	00	01	11	10
00	00	1	1	1
01	04	05	17	0
11	1	113	015	114
10	18	09		01

C0i $=$ C1i-1' C0i-1' Xi + C1i-1' C0i-1' Yi + C1i-1 C0i-1 Xi' + C1i-1 C0i-1 Yi' + C1i1 Xi' Yi' + C1i-1' Xi Yi
$=$ C1i-1' $\mathrm{C} 0 \mathrm{i}-1^{\prime}(\mathrm{Xi}+\mathrm{Yi})+\mathrm{C} 1 \mathrm{i}-1 \mathrm{C} 0 \mathrm{i}-1\left(\mathrm{Xi}^{\prime}+\mathrm{Yi}^{\prime}\right)+\mathrm{C} 1 \mathrm{i}-1 \mathrm{Xi}{ }^{\prime} \mathrm{Yi}^{\prime}+\mathrm{C} 1 \mathrm{i}-1^{\prime} \mathrm{Xi} \mathrm{Yi}$

	00	01	11	10
00	00	11	03	02
01	04	05	07	16
11	112	113	0150	
10	08	09	111	110

$\begin{aligned} \mathrm{C} 1 \mathrm{i} & =\mathrm{C} 1 \mathrm{i}-1 \mathrm{C} 0 \mathrm{i}-1 \mathrm{Xi}{ }^{\prime}+\mathrm{C} 1 \mathrm{i}-1 \mathrm{C} 0 \mathrm{i}-1^{\prime} \mathrm{Xi}+\mathrm{C} 1 \mathrm{i}-1^{\prime} \mathrm{C} 0 \mathrm{i}-1^{\prime} \mathrm{Xi} \mathrm{Y}^{\prime} \mathrm{Yi}+\mathrm{C} 1 \mathrm{i}-1^{\prime} \mathrm{C} 0 \mathrm{i}-1 \mathrm{Xi} \mathrm{Yi}^{\prime} \\ & =\mathrm{C} 1 \mathrm{i}-1(\mathrm{C} 0 \mathrm{i}-1 \oplus \mathrm{Xi})+\mathrm{C} 1 \mathrm{i}-1^{\prime}\left(\mathrm{C} 0 \mathrm{i}-1^{\prime} \mathrm{Xi} \mathrm{I}^{\prime} \mathrm{Yi}+\mathrm{C} 0 \mathrm{i}-1 \mathrm{Xi} \mathrm{Yi}^{\prime}\right)\end{aligned}$
(iv) Write a Verilog model for modeling your 1-bit cell by using an assign statement for each output.

```
module OneBit3X_Y (input C1i_1, C0i_1, Xi, Yi, output C1i,
COi, Zi);
assign Zi = C0i_1 ^ Xi ^ Yi ;
assign C0i = ~C1i_1 & ~C0i_1 & (Xi | Yi ) | C1i_1 & C0i_1 &
(~ Xi | ~Yi ) | C1i_1 & ~Xi & ~ ~Yi | ~C1i_1 & Xi & Yi;
assign C1i = C1i_1 & (C0i_1 ^ Xi) | ~C1i_1 & (~COi_1 & ~Xi
& Yi | COi_1 & Xi & ~Yi);
endmodule
```

(v) Write a Verilog model for modeling a 4-bit circuit based on the 1-bit model you have.
module FourBit3X_Y (input [3:0] X, Y, output [3:0] Z, output
C1_out, C0_out);
wire [3:0] C1, C0;
assign C1_out = C1[3];
assign CO_out $=\mathrm{CO}[3]$;

OneBit3X_Y M0 (1'b0, 1'b0, X[0], Y[0], C1[0], C0[0], Z[0]);
OneBit3X_Y M1 (C1[0], $\mathrm{C} 0[0], \mathrm{X}[1], \mathrm{Y}[1], \mathrm{C}[1], \mathrm{CO}[1], \mathrm{Z}[1])$;
OneBit3X_Y M2 (C1[1], CO[1], X[2], Y[2], C1[2], C0[2], Z[2]); OneBit3X_Y M3 (C1[2], CO[2], X[3], Y[3], C1[3], CO[3], Z[3]);
endmodule
(vi) Write a Verilog test bench to test the correctness of your design for the following input values: $\{X=1, Y=1\},\{X=3, Y=5\},\{X=5, Y=1\},\{X=4, Y=15\}$, and $\{X=15$, $\mathrm{Y}=0\}$.
module FourBit3X_Ytest() ;

```
reg [3:0] X, Y;
wire [3:0] Z;
wire C1_out, C0_out;
FourBit3X_Y M1 (X, Y, Z, C1_out, C0_out);
initial begin
        X=4'd1; Y=4'd1;
        #10 X=4'd3; Y=4'd5;
        #10 X=4'd5; Y=4'd1;
        #10 X=4'd4; Y=4'd15;
        #10 X=4'd15; Y=4'd0;
    end
endmodule
```

$\pm{ }^{-1}$ Fourbit3X_Ytest,X	1111	0001	0011	0101	0100	1111
$\pm{ }^{-1} /$ Fourbit3 3 _ Ytest/y	0000	0001	0101	0001	1111	0000
$\pm{ }^{-1} /$ Fourbit3X_Ytest/Z	1101	0010	0100	1110	1101	1101
4 FourBit3X_Ytest/CO_out	5 to					
\checkmark FourBit3X_Ytest/C1_out	St1					

