COE 202, Term 142

Digital Logic Design

Assignment# 2 Solution

Due date: Tuesday, March 31

- **Q.1.** It is required to design a combinational circuit that computes the equation Y=3*X, where X is a 4-bit unsigned number.
 - (i) Determine the number of outputs needed for your circuit.

Since the maximum input value is 15, the maximum output value is 3*15=45. Thus, we need 6 outputs.

(ii) Derive the truth table of your circuit.

X3	X2	X1	X0	Y5	Y4	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1
0	0	1	0	0	0	0	1	1	0
0	0	1	1	0	0	1	0	0	1
0	1	0	0	0	0	1	1	0	0
0	1	0	1	0	0	1	1	1	1
0	1	1	0	0	1	0	0	1	0
0	1	1	1	0	1	0	1	0	1
1	0	0	0	0	1	1	0	0	0
1	0	0	1	0	1	1	0	1	1
1	0	1	0	0	1	1	1	1	0
1	0	1	1	1	0	0	0	0	1
1	1	0	0	1	0	0	1	0	0
1	1	0	1	1	0	0	1	1	1
1	1	1	0	1	0	1	0	1	0
1	1	1	1	1	0	1	1	0	1

(iii) Derive minimized equations for your circuit using K-Map method.

\d	ব	ব	/ব
		ব	П

Y5 = X3 X2 + X3 X1 X0

П	П	П
	ব	(4)
		ব

Y4 = X3' X2 X1 + X3 X2' X1' + X3 X2' X0'

		(<u>b</u>)	
(P)	(<u>a</u>		
		বি	

Y3 = X3' X2' X1 X0 + X3' X2 X1' + X3 X2 X1 + X3 X2' X1' + X3 X1 X0'

OR

Y3 = X3' X2' X1 X0 + X3' X2 X1' + X3 X2 X1 + X3 X2' X1' + X3 X2' X0'

			[
~	ব	2	
~	\	\	
	П		P

Y2 = X2 X1' + X2 X0 + X2' X1 X0'

П		Г	
	V		V
	V	П	S
	\ <u>\\\\</u>		\p

Y1 = X1' X0 + X1 X0'

Y0 = X0

(iv) Write a Verilog model for modeling your design by using an assign statement for each output.

```
module Times3 (output [5:0] Y, input [3:0] X); assign Y[5] = X[3] && X[2] \| X[3] && X[1] && X[0]; assign Y[4] = !X[3] && X[2] && X[1] \| X[3] && !X[2] && !X[1] \| X[3] && !X[2] && !X[0]; assign Y[3] = !X[3] && X[2] && X[1] && X[0] \| !X[3] && X[2] && X[1] \| X[3] && X[2] && X[2]
```

(v) Write a Verilog test bench to test the correctness of your design for the following input values: X=1, X=3, X=5, X=10 and X=15.

```
module t_Times3();
           [5:0] Y;
 wire
           [3:0] X;
 reg
 Times3 M1 (Y, X);
initial begin
  X=4'b0001;
  #10
           X=4'b0011;
  #10
           X=4'b0101;
  #10
           X=4'b1010;
  #10
           X=4'b1111;
end
endmodule;
```

