COE 202, Term 162

Digital Logic Design

Assignment\# 1 Solution

Due date: Saturday, March 18, 2017
Q.1. Consider the combinational circuit given below which has three inputs $\mathrm{C} 1, \mathrm{C} 0$, and X , three outputs $\mathrm{C} 1+, \mathrm{C} 0+$ and Y :

(i) Write a Verilog model to model the combinational circuit using either primitive gates or assign statement.
module Cel13XM1 (output C1P, C0P, Y, input $\mathrm{C} 1, \mathrm{C} 0, \mathrm{X}$);

$$
\begin{aligned}
& \text { assign } \mathrm{Y}=\mathrm{X} \sim^{\wedge} \mathrm{C} 0 \\
& \text { assign } \mathrm{C} 0 \mathrm{P}=\mathrm{C} 1 \wedge(\sim \mathrm{X} \& \mathrm{C} 0) ; \\
& \text { assign } \mathrm{C} 1 \mathrm{P}=\mathrm{X} \mid(\mathrm{C} 1 \& \mathrm{C} 0) ;
\end{aligned}
$$

endmodule
(ii) Write a test bench to test the correctness of your Verilog model by applying all the input patterns to the circuit. Apply consecutive inputs patterns after a delay of 100ps. Verify the correct functionality of your circuit by deriving the truth table and comparing it with what you got from simulations.
module Cell3XM1_Test();
reg $\mathrm{C} 1, \mathrm{C} 0, \mathrm{X}$;
wire C1P, C0P, Y;
Cell3XM1 M1 (C1P, C0P, Y, C1, C0, X);
initial begin
$\mathrm{C} 1=0 ; \mathrm{C} 0=0 ; \mathrm{X}=0$;
\#100 C1=0; C0=0; X=1;
\#100 C1=0; C0=1; X=0;
\#100 C1=0; $\mathrm{C} 0=1 ; \mathrm{X}=1$;
\#100 C1=1; C0=0; X=0;
\#100 C1=1; C0=0; X=1;
\#100 C1=1; C0=1; X=0;
\#100 C1=1; C0=1; X=1;
end
endmodule
The expected truth table is as follows:

C 1	C 0	X	C 1 P	C 0 P	Y
0	0	0	0	0	1
0	0	1	1	0	0
0	1	0	0	1	0
0	1	1	1	0	1
1	0	0	0	1	1
1	0	1	1	1	0
1	1	0	1	0	0
1	1	1	1	1	1

The simulation waveform given below matches the expected values shown in the truth table.

(iii) Write a Verilog model that instantiates four copies of this circuit and connects C 1 and C 0 of the first instance to $00, \mathrm{C} 1+$ and $\mathrm{C} 0+$ of the first instance to C 1 and C 0 of the 2 nd instance, $\mathrm{C} 1+$ and $\mathrm{C} 0+$ of the 2 nd instance to C 1 and C 0 of the 3 rd instance, and $\mathrm{C} 1+$ and $\mathrm{C} 0+$ of the 3 rd instance to C 1 and C 0 of the 4th instance.
module D3XM1 (output Cout1, Cout0, output [3:0] Y, input [3:0] X);
wire [2:0] C1P, C0P;
Cell3XM1 M1 (C1P[0], C0P[0], Y[0], 0, 0, X[0]);
Cell3XM1 M2 (C1P[1], C0P[1], Y[1], C1P[0], C0P[0], X[1]);
Cell3XM1 M3 (C1P[2], C0P[2], Y[2], C1P[1], C0P[1], X[2]);
Cell3XM1 M4 (Cout1, Cout0, Y[3], C1P[2], C0P[2], X[3]);
endmodule
(iv) Write a test bench that tests the 4-bit circuit modeled in (iii) that applies the following input patterns to your circuit $(X 3 X 2 X 1 X 0)=\{0001,0010,0011,0100$, $0101\}$ and observes the obtained outputs Y3Y2Y1Y0. Can you guess the functionality of the 4-bit circuit?
module D3XM1_Test();
reg [3:0] X;
wire Cout1, Cout0;
wire [3:0] Y;
D3XM1 M1 (Cout1, Cout0, Y, X);
initial begin
X=4'b0001;
\#100 X=4'b0010;
\#100 X=4'b0011;
\#100 X=4'b0100;
\#100 X=4'b0101;
end
endmodule

The simulations results are shown below and it can be deduced from simulations that the circuit is computing the function $\mathrm{Y}=3^{*} \mathrm{X}-1$.

\pm /D3XM1_Test/X	0101	0001	0010	0011	0100	0101
	1110	0010	0101	1000	1011	, 1110
4/D3XM1_Test/Cout1	Sto					
4 /D3XM1_Test/Cout0	St1					

