COE 202, Term 151

Digital Logic Design

Assignment\# 1 Solution

Due date: Tuesday, Sep. 29, 2015

Q.1. It is required to design a combinational circuit that has three inputs A, B, and C and a single output Y such that the output is set to 1 if the three inputs are equal to each other.
(i) Derive the equation of the circuit as a sum-of-products equation.
$\mathrm{Y}=\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$
(ii) Write a Verilog model to model the gate level design of the circuit using the primitive gates: AND, OR, and NOT gates. Model the delay of each gate as a function of its input i.e., the delay of a NOT gate is 1 ps , the delay of a 2 -input gate is 2 ps , and the delay of a 3-input gate is 3 ps .
module FirstModule (output Y, input A,B,C);

```
and#3(r1,A,B,C);
not#1(n1,A);
not#1(n2,B);
not#1(n3,C);
and#3(r2,n1,n2,n3);
or#2(Y,r1,r2);
```

endmodule
(iii) Determine the longest delay of your circuit.

The longest delay is 6 ps .
1 for the inverter +3 for the 3 -input AND gate +2 for the OR gate $=6$.
(iv) Write a test bench to test the correctness of your Verilog model by applying all the possible input patterns. Apply consecutive inputs patterns after a delay of 10ps. Verify the correctness of your computed longest delay in (iii).
module First_Module_testbench();
wire Y;
reg A, B, C;
FirstModule M1 (Y, A, B, C);
initial begin

$\mathrm{A}=0 ; \mathrm{B}=0 ; \mathrm{C}=0 ;$	
$\# 10$	$\mathrm{~A}=0 ; \mathrm{B}=0 ; \mathrm{C}=1 ;$
$\# 10$	$\mathrm{~A}=0 ; \mathrm{B}=1 ; \mathrm{C}=0 ;$
$\# 10$	$\mathrm{~A}=0 ; \mathrm{B}=1 ; \mathrm{C}=1 ;$
$\# 10$	$\mathrm{~A}=1 ; \mathrm{B}=0 ; \mathrm{C}=0 ;$
$\# 10$	$\mathrm{~A}=1 ; \mathrm{B}=0 ; \mathrm{C}=1 ;$
$\# 10$	$\mathrm{~A}=1 ; \mathrm{B}=1 ; \mathrm{C}=0 ;$
$\# 10$	$\mathrm{~A}=1 ; \mathrm{B}=1 ; \mathrm{C}=1 ;$
end	

endmodule

(v) Write a second Verilog model to model the circuit using the assign statement to model the equation of the circuit. Use your computed delay in (iii) as the delay of your circuit.
module SecondModule(output Y, input A,B,C);
assign\#6 Y $=(\mathrm{A} \& \mathrm{~B} \& \mathrm{C}) \mid(\sim \mathrm{A} \& \sim \mathrm{~B} \& \sim \mathrm{C})$;
endmodule
(vi) Use the test bench in (iv) to test the correctness of your second Verilog model.
module second_module_testbench();
wire Y;
$\operatorname{reg} \mathrm{A}, \mathrm{B}, \mathrm{C}$;
SecondModule M2 (Y, A, B, C);
initial begin
$\mathrm{A}=0 ; \mathrm{B}=0 ; \mathrm{C}=0$;
\#10 $\mathrm{A}=0 ; \mathrm{B}=0 ; \mathrm{C}=1$;
\#10 $\mathrm{A}=0 ; \mathrm{B}=1 ; \mathrm{C}=0$;

$\# 10$	$\mathrm{~A}=0 ; \mathrm{B}=1 ; \mathrm{C}=1 ;$
$\# 10$	$\mathrm{~A}=1 ; \mathrm{B}=0 ; \mathrm{C}=0 ;$
$\# 10$	$\mathrm{~A}=1 ; \mathrm{B}=0 ; \mathrm{C}=1 ;$
$\# 10$	$\mathrm{~A}=1 ; \mathrm{B}=1 ; \mathrm{C}=0 ;$
$\# 10$	$\mathrm{~A}=1 ; \mathrm{B}=1 ; \mathrm{C}=1 ;$

endmodule

