COE 202, Term 131

Digital Logic Design

Assignment\# 1 Solution

Due date: Tuesday, Nov. 12
Q.1. It is required to design a combinational circuit that computes the equation $\mathrm{Y}=3 * \mathrm{X}$, where X is an n -bit unsigned number.
(i) Design the circuit as a modular circuit where each module receives a single bit of the input, X_{i}.

(ii) Derive the truth table of your 1-bit module in (i).
Truth Table"

(iii) Derive minimized two-level sum-of-product equations for your 1-bit module circuit.

$$
C O_{1}=x_{i} C I_{1}+x_{i} C I_{0}
$$

$$
C O_{0}=\bar{x}_{i} C I_{1}+x_{i} \overline{C I}_{1} \overline{C I}_{0}
$$

$$
y_{i}=\bar{x}_{i}<I_{0}+x_{i} \overline{<I_{0}}
$$

(iv) Verify the correctness of your design by modeling and simulating a 4-bit circuit using LogicWorks.

