COE 202, Term 131

Digital Logic Design

Assignment# 1 Solution

Due date: Tuesday, Nov. 12

- **Q.1.** It is required to design a combinational circuit that computes the equation Y=3*X, where X is an n-bit unsigned number.
 - (i) Design the circuit as a modular circuit where each module receives a single bit of the input, X_i .

(ii) Derive the truth table of your 1-bit module in (i).

Truth Table;

χį	CI_1	(Io	C01	(00	30
0	0	0	0	0	0
(5)	0	1	0	۵	1
9	1	O	0	l	0
0	(x	X	X
	٥	0	0	1	1
1	0	l).	Ö	Ö
(1	O	t	0	1
t		1	χ	χ	х

(iii) Derive minimized two-level sum-of-product equations for your 1-bit module circuit.

(iv) Verify the correctness of your design by modeling and simulating a 4-bit circuit using LogicWorks.

