ICS 103: Computer Programming in C
Handout-12 Topic: 1-D Array

Objective:
· To learn how to declare and access 1 –D array.

· To learn how to read and print 1-D array elements.

What is array? Why array are needed?:
Arrays are very useful tools when we need to keep several values (e.g grades of students in an exam) in memory. Instead of using several variables, we use one array variable. Specifying its index then accesses individual element.

Examples:
1.
int a[5]; declares an array of size 5.

	
	
	
	
	

	0
	1
	2
	3
	4

Note:
In C language array index always starts from 0

2.
a[0]=10; a[1]=20; a[2]=30; a[3]=40; a[4]=50; Assigns values to the elements.

3. Array can also be initialised at point of declaration:

int a[]={10, 20, 30, 40, 50};

Note:
if you specify a size but give fewer values, the remaining cells will be

initialised to zero .

Declaring and Referencing 1-D array :

Till now to read n number of integers (or float, double, character) we took n number of variables. For example, to read say 5 integers we used 5 integer variables say a, b, c, d, e. But with arrays we can use a single variable name to represent any number of variables of the same data type. The individual elements in the array can be accessed by supplying an index or subscript after the name of the array variable in the square brackets. The array is declared like any simple variable but the size of the array should be specified.

The first element of the array is always referenced with the 0 index. Array elements are always numbered from 0 to (size-1).

int
arri[10] ;

 float
 arrf[30] ;

Here two arrays are declared. The array arri contains 10 integers arri[0] to arri[9] and array arrf contains 30 floating values arrf[0] to arrf[29]. The first elements of arri and arrf are referenced as arri[0] and arrf[0]. The last elements of arri and arrf are referenced as arri[9] and arrf[29]. Similarly, the 5th element of arri can be referenced by arri[4], the 20th element of arrf can be referenced as arrf[19] and so on. Note that when the arrays are declared their sizes are also declared. Here the size of arri array is 10 and the size of arrf array is 30. Now, arri[0]…arri[9] can have any integer value say arri[3] = 123, arri[7] = 34; arrf[0]…to arrf[29] can have any float value say arrf[2] = 23.56, arrf[23] = 222.567.

The array size can also be given by using the define statement as shown below :

#define
SIZE1
10

#define
SIZE2
100

int
arri[SIZE1] ;

float
arrf[SIZE2] ;

Using for Loops for Sequential Access of 1-D array elements :
How to read numbers into arrays?:

The numbers can be read into arrays by using for loop. Consider the following example:

Example:
float
abc[25] ;

int
i ;

for (i = 0; i < 25; ++i)

{
printf (“Enter the %d element \n”, i) ;

scanf (“%f”, &abc[i]) ;

 }

Here, the variable abc is declared as an array of size 25 consisting of float values. An integer variable i is declared to be used as a subscript for the array. Next, for loop is used starting from 0 and ending at 24 which is the range of the array abc. Inside the loop the printf statement asks the user to enter the particular element of the array and scanf reads that element. Note that here also the address operator & and the name of the array is used but the subscript is added so that all the elements can be read. The %f operator is used because the array is of float type.

How to print numbers from arrays ? :
The numbers can be printed from arrays by using for loop. Consider the following example:

Example:
double
abc[50] ;

int
n ;

for (n = 0; n < 50; ++n)

{

 printf (“The %dth element of array is %lf\n”, n, abc[n]) ;

 }

The printing of array is similar to reading. Here also for loop is used starting from 0 and ending at last element 49. Each time the printf statement prints the particular element of the array say for 25th element as The 25th element of array is 245.778. The %d operator is used because n is integer type and %lf is used because array abc is of double type.

Array Initialization :

How to initialize 1-D array elements ? :

Array can be initialized in their declarations like simple variables. Here the initial values for all the elements are given in the parentheses separated by commas. Examples of this are as follows:

int
vector [5] = { 12, 67, -56, 89, 1 } ;

float
xyz [8] = {1.5, 7.8, 5.6, -9.55, 0.5, 8.4} ;

char
ccc [4] = {‘r’, ‘4’, ‘+’, ‘s’ } ;

int
sss [] = { 12, 45, 78 } ;

In the second example the size of array xyz is 8 but only 6 initial values are given. In this case the remaining 2 elements xyz[6] and xyz[7] will have 0 as their initial value. Thus if the initialization list is smaller than the size the remaining elements are initialized with 0. In the last example the size of the array is not given but from the initialization list the size of the array is assumed as 3.

Now consider the problem of initializing a very big array of size say 400 with the same value for all the elements. It will be very difficult to initialize all the 400 elements by using the initialization list in the declaration. To avoid this the initialization can be done by using the for loop.

Example:

float
abc[400] ;

int
i;

for (i = 0 ; i < 400 ; ++i)

 {

 abc [i] = 1.0 ;

 }

In the above example all the 400 elements of the array abc are initialized with the 1.0 value by using the for loop.

Solved Problem#1:

/**

Store five grades in a 1-D array using for loop and print them on screen using for loop.

***/

#include<stdio.h>

int main()

{

float
grades[5] ; // array declaration

int
i ;

printf("Please , Enter five grades to store in array : \n");

 printf("***\n");

printf("\n");

for (i = 0; i < 5; ++i) // loop to read (or store) five grades in array

{

printf ("Enter the %d element of array :", i) ;

scanf ("%f", &grades[i]) ;

}

for (i = 0; i < 5; ++i) // loop to display five grades stored by

// you in array grades

{

 printf ("\nThe %d th element of array is %lf\n", i, grades[i]) ;

}

return 0;
} // End of main

Sample Output:

[image: image1.png][(Inactive C:ATCWIN45\BIN\NONAME 00 EXE)

Please , Enter five grades to store in array : E}

Enter the
Enter the
Enter the
Enter the
Enter the

element of array :2
element of array
element of array
element of array :9
element of array

Fuvaao

]
The 0 th element of array is 2.000000
The 1 th element of array is 4.000000
The 2 th element of array is 7.000000
The 3 th element of array is 9.000000

The 4 th element of array is 10.000000

K]

Solved Problem#2:

/**

Create three arrays. Read data into the first two of them. Subtract each

element in the first array from the corresponding element in the second

array. Store the differences in the third array. Print all the arrays.

**/

#include<stdio.h>

#define MAX_SIZE 5

int main()

{

int first[MAX_SIZE], second[MAX_SIZE], diff[MAX_SIZE], i;

printf("\nEnter %d data items for first array : ", MAX_SIZE);

for(i=0;i<MAX_SIZE; i++) // input first array
{ // input first aaray

scanf("%d", &first[i]);

}

printf("\nEnter %d data items for second array : ", MAX_SIZE);

for(i=0;i<MAX_SIZE; i++) // input second array

{

scanf("%d",&second[i]);

}

for(i=0;i<MAX_SIZE; i++) // compute the differences

{

diff[i]=second[i] - first[i];

}

printf("\n\nOutput of the arrays : ");

for(i=0;i<MAX_SIZE; i++) // output the arrays

{

printf("\n\n%5d %5d %5d", first[i], second[i], diff[i]);

}

return 0;
} // end of main

Sample Output:

[image: image2.png]S (Inac

C:\TCWINA5\BIN\NONAME 01 EXE)

Enter 5 data items for first array : 468 6 4 H

Enter 5 data items for second array : 2 4 8 3 7

Output of the arrays :

w2 -2
6 4 -2
s s o
6 3 -3
w7 3

PAGE
Page 7 of 7

