Name: Id#

ICS 103, Term 083

Computer Programming in C $\label{eq:Quiz#1} \textbf{Quiz#1}$

Date: Tuesday, July 21, 2009

(1)	is volatile memory that can be accessed in any order (as opposed to sequential access memory).												
(2)			is n	on-vo	latile m	emory	that canı	not be written	to.				
(3)	Examples of s	econda	nry memory i	nclud	e and								
(4)	arithmetic and	l logica	al operations	coore	dinates a.	all con	nputer o	perations and	performs				
(5)			contro	ls the	interacti	on bety	ween ma	chine and user	r.				
(6)			translat	es hig	h-level	prograi	ns to ma	achine code.					
(7)		tur	rns the Objec	t File	into an l	Executa	able.						
	Advantages			_		_							
(9)	Advantages			_			•	language					
(10) Software	dev	elopment	is		on		· ·	steps:				

	(12)	The	bene	fit of	pse	udo	code	e is _											
	(13)	The # include <stdio.h> directive is used to</stdio.h>																	
	(14)	The #define M 5 directive instructs the preprocessor to																	
	th	In C e data pe	type					i	s use	ed fo	or re	pres	for 1	repre	esent eal n	ing i umb	integ	er nu	umbers,
	(16)	The	expre	essio	n 4+	-6/2-	⊦3 e	valua	ites t	.0									
	(17)	The expression (double) 6/4 evaluates to																	
	(18)	The expression 8.0*10/4*5-1 evaluates to																	
	(19)	9) The expression 8.0 +10/4*5-1 evaluates to												·					
	(20)	The	expre	essio	n 35	%15	5%2	eval	uate	s to _									·
_	now the				ollov	ving	prog	gram	in t	he sp	ace	prov	ideo	l bel	ow i	t. Ea	ach s	squar	re
	int	lude main int dou pri pri rn 0	(vo: i=- ble ntf	id) -950 j=9	{ 6; 99.	517 f %	10.			j,j	;);								