ICS 103: Computer Programming in C

Spring Semester 2008-2009 (Term-082)
Lab #6: Functions with Input Parameters

Objective:

· Learn how to write user defined functions.

· Learn void functions and functions with return result.

· Learn functions with input parameters.

· Learn scope of variables.

Review about Functions:
Functions in C are block of statements that do a certain task. They are used to organize a program into smaller building blocks and make it easy to understand and follow its behavior.
Functions are used in c for the following reasons:

1. complicated tasks are successively divided into simpler and more manageable tasks which can be easily handled. Each small task is handled by a function. This strategy is referred to as is divide and conquer

2. Many programs require that a specific function code is repeated many times. Instead of writing the function code as many times as it is required, we can write it as a single function and access the same function again and again as many times as it is required just by calling it. This reduces duplication.
3. Testing and correcting errors is easy because errors are easily localized and corrected.
4. The main function becomes smaller. Thus, we can understand the flow of the program easily since its readability is enhanced.
5. A single function written in a program can also be used in other programs also. Functions promote code reusability.
 When talking about user defined functions, three things need to be understood. Function prototype, function call, and function definition.
The function prototype consists of the head of the function followed by semicolon. It is needed in case the function definition is put after the location where it is called. The function call is used anytime we need the function to do a task for us. The function can be called any number of times. The function definition contains the body of the function. You cannot define a function inside another function.

Two types of functions will be covered in this lab: void functions with input arguments and functions with input arguments returning a single result. The input arguments are used to transmit input to the function. When a function is called the values of the actual arguments (arguments used in the call) will be assigned to the formal arguments (arguments used in the definition), then the execution will proceed inside the function body. Once it reaches the end of the function or return statement it will return to the location of the call.

If a function does not return a value its call must be in a separate statement. If it returns a value, then its call must be part of an exprfession.
· The general format of a function is:

returnTypee fname(formal parameters) {

local variables

statements

}

· If the function returns a value, returnType is the type of the value the function returns (e.g. int, double, or char) . If the function does not return a value, returnType should be declared as void.

Example 1:

	//* prints the largest of two integers in a box;

#include<stdio.h>

double bigger(double n1, double n2); // function prototype
void print_rboxed(double rnum); // function prototype
int main(void) {

 double number1,number2, max;

 printf("Please input two numbers :");

 scanf("%lf %lf", &number1, &number2);

 max = bigger(number1, number2); // function call
 printf("The max of %lf and %lf is\n",number1,number2);

 print_rboxed(max) ; // function call

 system("pause");

 return 0;

}

//returns the largest of two numbers
// function definition
double bigger(double n1, double n2) {

 double larger;

 if(n1 > n2)

 larger = n1;

 else

 larger = n2;

 return larger;

}

/* Displays a real number in a box. */
// function definition
void print_rboxed(double rnum) {

 printf("***********\n");

 printf("* *\n");

 printf("* %7.2f *\n", rnum);

 printf("* *\n");

 printf("***********\n");

}

Example 2:

	//draws a rectangle using functions

#include <stdio.h>

void draw_solid_line(int size);

void draw_hollow_line(int size);

void draw_rectangle(int len, int wide);

int main(void) {

 int length, width;

 printf("Enter length and width of rectangle >");

 scanf("%d%d", &length, &width);

 draw_rectangle(length, width);

 system("pause");

 return 0;

}

void draw_solid_line(int size) {

 int i;

 for (i=1; i<=size; i++)

 printf("*");

 printf("\n");

}

void draw_hollow_line(int size) {

 int i;

 printf("*");

 if (size > 2) {

 for (i=1; i<= size-2; i++)

 printf(" ");

 }

 printf("*\n");

}

void draw_rectangle(int len, int wide) {

 int i;

 draw_solid_line(wide);

 if (len > 2) {

 for (i=1; i<=len - 2; i++)

 draw_hollow_line(wide);

 }

 draw_solid_line(wide);

}

Exercises:

1. Modify Example 2 so that the symbol to draw the rectangle, instead of being ‘*’, should be provided by the user.

[image: image1.png](Inact -CWIN\BIN\NONAMEQO. EXE) HE

Enter length and width of rectangle >10 7 4|
Enter Symbol for the frame >$
$88999¢

A govvrraans
4z
4z
4z
4z

[image: image2.png](Inactive C:\TCWIN\BIN\NONAMEQO. EXE) HE

Enter length and width of rectangle >12 5
Enter Symbol for the frame >@

eeeed

e @

e @
e @
e @
e @
e @
e @
e @
e @
e @
eeeed

[elclc]

KI|

2. Write a function divisors that receives an integer number and displays its divisors on the screen including 1 and itself. Write the main function to test your function.
[image: image3.png]Enter an integer number >32
divisors of 32 are

1.2 4 8 16 32 I

3. Modify the function divisors so that now it returns the number of divisors excluding 1 and the number itself. Write the main to test your function.

[image: image4.png](Inactive C:\TCWIN\BIN\NONAMEQO. EXE) !

Enter an integer number >17 BN
17 has @ divisors other than 1 and itself

Y

[image: image5.png](Inactive

-CWIN\BIN\NONAMEQO. EXE) !E
Enter an integer number >32

32 has 4 divisors other than 1 and 1tselF

Y

The 4 divisors of 32 are 2,4,8 and 16.
4. Write a logical function perfect_Square that receives a positive integer number and checks if it is a perfect square or not.

Note: perfect square numbers are 4, 9,16,25,36 etc….
Write a main function that makes use of the perfect_Square function to find and print all perfect squares between n1 and n2. n1 and n2 are end values of a range introduced by the user.
[image: image6.png](Inactive

CWIN\BIN\NONAMEO(

) [

Enter end values of an interval(integer values) > 2 21
perfect squares between 2 and 21 are
4 9 16

5. (optional)

Write a logical function, is_prime, that takes an integer number and determines if the number is prime or not.
Note: A prime number is one that does not have proper factors.
Write a main function that makes use of the is_prime function to find and print all the prime numbers from 2 to 100.

