
Name: KEY Id#

COE 205, Term 092

Computer Organization & Assembly Programming

Quiz# 6

 Date: Monday, May 17, 2010

Q1. Compare macros and procedures in terms of parameter passing, types of parameters,

invocation mechanism, memory space, execution time and assembly time.

1. Parameter passing: Parameter passing in a macro invocation is similar to that in a

procedure call of a high-level language. The arguments are listed as part of a macro

call. Parameter passing in a procedure call often involves the stack. The number of

stack operations in preparation for a procedure call grows in direct proportion to the

number of parameters passed. This, in addition to the call/ret overhead, increases the

overhead and affects the performance. Macros avoid this overhead by text

substitution but increase the space requirement.

2. Types of parameters: Since a macro is a text substitution mechanism, a variety of

parameter types can be passed. For example, the opcode of an instruction could be

passed as a parameter. Procedures do not have such flexibility in parameter passing.

3. Invocation mechanism: Macro invocation is done at assembly time by text

substitution. However, procedure invocation is done at run time by transferring

control to the procedure. This leads to the following tradeoff. Macros tend to increase

the length of the executable code due to macro expansions. This leads to increased

assembly time.

In summary, the tradeoffs are that using macros results in faster execution of the

code. However, macros result in increased memory space due to macro expansions.

Procedures save space, as only one copy of the procedure is kept. However,

procedure invocation overhead (to pass parameters via the stack and for call/ret)

increases the execution time. Note that macro invocation causes assembly-time

overhead but not run-time overhead.

Q2. Give an example where it is better to use macros than procedures.

Macros are useful in defining macro-instructions that extend the instruction set of a processor.

Macros are also useful when text substitution is the only way available. For example, suppose

that we want to preserve the content of registers ECX, EDX, ESI and EDI across procedure calls.

We can conveniently do this by the following two macros:

save_regs MACRO restore_regs MACRO

 PUSH ECX POP EDI

 PUSH EDX POP ESI

 PUSH ESI POP EDX

 PUSH EDI POP ECX

 ENDM ENDM

It is not possible to write a procedure to do the same.

Q3. Given the following macros and macro invocations, determine the assembly code generated

by the assembler:

(i) GET_BIG FIRST, SECOND

GET_BIG MACRO WORD1, WORD2

 LOCAL EXIT

 MOV EAX, WORD1

 CMP EAX, WORD2

 JG EXIT

 MOV EAX, WORD2

 EXIT:

 ENDM

MOV EAX, FIRST

CMP EAX, SECOND

JG ??0000

MOV EAX, SECOND

??0000:

(ii) A LABEL DWORD
 BLOCK 5

 BLOCK MACRO N

 K=1

 REPT N

 DWORD K

 K=2*K+1

 ENDM

 ENDM

A LABEL DWORD

 DWORD 1

DWORD 3

DWORD 7

DWORD 15

DWORD 31

(i) SAVE_REGS < EAX, EBX, ECX>

SAVE_REGS MACRO REGS

 IRP D, <REGS>

 PUSH D

 ENDM

 ENDM

PUSH EAX

PUSH EBX

PUSH ECX

