COE 205, Term 082

Computer Organization \& Assembly Programming

Quiz\# 2

Date: Monday, March 23, 2009

Q1. Consider an 8-bit register that has the binary number 10010110. Determine the decimal value of the number if it represents:
(i) An unsigned number.
$=128+16+4+2=150$
(ii) A signed number in 2's complement representation.

The 2's complement of 10010110 is 01101010 .
The number $01101010=64+32+8+2=106$.
Thus, the number 10010110 represents -106 .

Q2. Perform the following arithmetic operations assuming that numbers are represented using 8bit 2's complement representation. Indicate in your answer when an overflow occurs.
(i) $\mathrm{CB}+\mathrm{CA}$
$C B+C A=95$.
There is no overflow since we are adding two negative numbers and we got a negative number.
(ii) 68 - E0

$$
68-\mathrm{E} 0=68+20=88
$$

There is overflow since we are adding two positive numbers and we got a negative number.

Q3. Fill the blanks in the following questions:
(i) Assuming unsigned number representation, the hexadecimal number (8F) $\mathbf{1 0}_{\mathbf{1}}$ represents the decimal number $\underline{143}$.
(ii) The decimal number $\mathbf{1 2 0}$ is represented in binary as $\underline{1111000}$.
(iii) The binary number $\mathbf{1 1 0 0 0 1 1 1}$ represents character \underline{G} and uses an odd parity bit. Note that the ASCII code of character \mathbf{A} is 41 H and that of character \mathbf{a} is 61 H .
(iv) Assuming 8-bit 2`s complement representation, the smallest (negative) number is $\underline{10000000}$ in binary and $\underline{-128}$ in decimal and the largest (positive) number is $\underline{01111111}$ in binary and +127 in decimal.

