COE 205, Term 071 Computer Organization & Assembly Programming

Quiz# 2

Date: Saturday, Oct. 27, 2007

Q1. Fill the blank in each of the following questions:

- 1. The size of the **address bus** in the **8086** processor is <u>20</u> bits while in the **Pentium IV** Processor it is <u>36</u> bits.
- 2. The size of the **data bus** in the **8086** processor is <u>16</u> bits while in the **Pentium IV** Processor it is <u>64</u> bits.
- 3. The IA-32 registers consist of <u>8</u> 32-bit general-purpose registers, <u>6</u> 16-bit segment registers, the <u>EIP</u> register and the <u>status & flags</u> register.
- **4.** Adding the following two 16-bit numbers F0F8+EF8A has the following values on the flags: CF=<u>1</u>, ZF=<u>0</u>, SF=<u>1</u>, AF=<u>1</u>, PF=<u>1</u>, OF=<u>0</u>. (**Result=E082**)
- 5. The address of the instruction to be fetched is stored in a register called <u>Instruction</u> <u>Pointer</u>.
- 6. After reading an instruction whose size is **64 bits**, the **instruction pointer** is incremented by $\underline{\mathbf{8}}$.
- 7. Each machine language instruction is first fetched from memory and stored in the **Instruction Register**.
- 8. A processor is considered **superscalar** when <u>it can execute more than one</u> <u>instruction per clock cycle</u>.

- **9.** RISC processors have the following characteristics: <u>small and simple instruction</u> <u>set, all instructions have the same width, simpler instruction formats and addressing modes, instructions decoded and executed directly by hardware</u>
- 10. 16-bit and 8-bit parts of the registers **EAX, EBX, ECX, EDX** can be accessed by programmers.
- 11. With a 5-stage pipeline with each stage requiring one clock cycle for execution, the number of clock cycles needed to execute 10 instructions is 5+10-1=14.
- 12. In real address mode, the staring address of segment#10CD is <u>10CD0</u> and the maximum ending address is <u>10CD0+0FFFF=20CCF</u>.
- 13. In real address mode with a logical address given as 10A2:30A0, the linear address is =10A20+030A0=13AC0.
- 14. In Flat Memory model, all segments are mapped to the same linear address space.
- 15. In protected mode, linear address is translated to physical address using paging.
- 16. <u>Assembler directives</u> provide information to the assembler while translating a program.

Q2. Suppose that the following data declarations are allocated in the data segment.

Ι	BYTE	32, '32'		
J	WORD	1234Н, -10		
K	EQU	1		
ALIGN 4				
L	DWORD	K-5		
М	BYTE	$2 \ dup(2, 2 \ dup(1))$		

(i) Show the content of the allocated memory, in hexadecimal. Note that the ASCII code of character 'A' is 41H and that of 'a' is 61H. Also, the ASCII code of character '0' is 30H.

Variable	Memory Address	Memory Content (Hex)
	(Hex)	
Ι	00404000	20
	00404001	33
	00404002	32
J	00404003	34
	00404004	12
	00404005	F6
	00404006	FF
	00404007	Skipped due to alignment
L	00404008	FC
	00404009	FF
	0040400A	FF
	0040400B	FF
М	0040400C	02
	0040400D	01
	0040400E	01
	0040400F	02
	00404010	01
	00404011	01
	00404012	

- (ii) Determine the content of **destination** registers after executing each of the given instructions:
 - **1.** MOV AL, I+1 **AL=33**
 - 2. MOV EBX, OFFSET J **EBX=00404003**
 - **3.** MOV CH, TYPE L CH=4
 - 4. MOV EDX, SIZEOF J EDX=4
 - 5. MOV EDX, LENGTHOF J EDX=2
 - 6. MOV DH, BYTE PTR J+1 **DH=12**