COE 205, Term 061

Computer Organization \& Assembly Programming

Quiz\# 2

Date: Sunday, Oct. 8, 2006
Q1. Consider an 8-bit register that has the binary number 11100100. Determine the decimal value of the number if it represents:
i. An unsigned number.
$=128+64+32+4=228$
ii. A signed number in sign-magnitude representation.
$=-(64+32+4)=-100$
iii. A signed number in $\mathbf{1}$'s complement representation.

We first take the 1 's complement $=00011011=16+8+2+1=+27$
Then, $11100100=-27$
iv. A signed number in 2's complement representation.

We first take the 2 's complement $=00011100=16+8+4=+28$
Then, $11100100=-28$

Q2. Perform the following arithmetic operations assuming that numbers are represented using 8bit 2's complement representation. Indicate in your answer when an overflow occurs. Also determine the decimal value of the operands and the result
i. $\quad 7 \mathrm{~F}+\mathrm{FF}$

	7F	(+127)
+	FF	(-1)
	7E	(+126)

No overflow since we are adding numbers of opposite sign.
ii. $1 E-90=1 E+70$

	1 E	$(+30)$
+	70	$(+122)$
$---------------------12)$		

There is overflow since we are adding two positive numbers and we are getting a negative number.

Q3. Fill the blanks in the following questions:
(i) The binary number 01100111 represents character \qquad , and uses an
\qquad odd \qquad parity bit. Note that the ASCII code of character A is 41 H and that of character a is 61 H .
(ii) Assuming 6-bit 2`s complement representation, the smallest (negative) number is
\qquad 100000 in binary and -32 \qquad in decimal and the largest (positive) number is 011111 \qquad in binary and \qquad $+31$ \qquad in decimal.
(iii) If you type the characters A8c on your keyboard, the binary sequence sent to the computer using 8 -bit ASCII code with the $8^{\text {th }}$ bit being an even parity bit is 0100 0001(A) 10111000 (8) 01100011 (c). Note that the ASCII code for character 0 is 30 H .

