COE 205, Term 033

Computer Organization \& Assembly Programming

Quiz\# 2 Solution

Date: Tuesday, July 6, 2004
Q1. Represent the signed number -111 in sign-magnitude, 1's complement and 2's complement representations using the minimum number of bits possible.
$+111=1101111$
-111 in sign-magnitude will be 11101111
-111 in 1's complement will be 10010000
-111 in 2's complement will be 10010001

Q2. Find the decimal value of the following numbers:
i. $(6 \mathrm{~A} .4)_{16}$
$=6 * 16+10+4 * 16^{-1}$
$=106.25$
ii. $(0110.0111)_{2}$

$$
\begin{aligned}
& =1 * 2+1 * 2^{2}+1 * 2^{-2}+1 * 2^{-3}+1 * 2^{-4} \\
& =6+7 / 16 \\
& =6.4375
\end{aligned}
$$

Q3. Determine in both binary and decimal the range of values that can be represented in 6 bits for each of the following representations:
i. unsigned representation
range is from 0 to $2^{6}-1=0$ to 63
range in binary is from 000000 to 111111
ii. sign-magnitude representation
range is from $-\left(2^{5}-1\right)$ to $+\left(2^{5}-1\right)=-31$ to +31
range in binary is from 111111 to 011111
iii. 1's complement representation
range is from $-\left(2^{5}-1\right)$ to $+\left(2^{5}-1\right)=-31$ to +31
range in binary is from 100000 to 011111
iv. 2's complement representation
range is from $-\left(2^{5}\right)$ to $+\left(2^{5}-1\right)=-32$ to +31
range in binary is from 100000 to 011111

Q4. Assuming even parity show the 8-bit ASCII representation for each of the following characters: (Note that the ASCII code of character A is 41 H and that of character 0 is 30 H)

C: 11000011
4: 10110100

Q5. Determine whether the following operations will produce correct results or not assuming 8bit 2's complement representation. Justify your answer.
i. $\mathrm{FF}+81=80$

Result is correct because we added two negative numbers and got a negative number.
$-1+(-127)=-128$
ii. $\quad 7 \mathrm{~F}+01=$ 80
Result is incorrect because we added two positive numbers and got a negative number.
$+127+1=128$ which cannot be represent in 8 -bits and is not equal to $80 \mathrm{~h}=-128$.
iii. $\mathrm{FF}+7 \mathrm{~F}=7 \mathrm{E}$

Result is correct because we added a positive number with a negative number and overflow can never occur.

$$
-1+127=126
$$

