COE 205, Term 032 Computer Organization & Assembly Programming

Quiz# 2

Date: Sunday, March 7, 2004

Q1. Consider an 8-bit register that has the binary number 11100010. Determine the decimal value of the number if it represents:

i. An unsigned number.

128 + 64 + 32 + 2 = 226

ii. A signed number in sign-magnitude representation.

-(64+32+2) = -98

iii. A signed number in 1's complement representation.

The 1's complement is 00011101 So, the number is -29

iv. A signed number in 2's complement representation.

The 2's complement is 00011110 So, the number is -30

Q2. Perform the following arithmetic operations assuming that numbers are represented using 8bit 2's complement representation. Indicate in your answer when an *overflow* occurs.

i. 7F + 01+ $\begin{array}{c} 1 \\ 7 \\ 7 \\ - \\ 8 \\ 0 \end{array}$

There is overflow since the sign bit of the result is negative while it should be positive.

ii. FE - 7F

The 2's complement of 7F is 81

There is overflow since the sign bit of the result is positive while it should be negative.

Q3. Fill the blanks in the following questions:

(i) The binary number 01000100 represents character _____D____, and uses an ______ parity bit. Note that the ASCII code of character A is 41H and that of character a is 61H.

(ii) Assuming 7-bit 2`s complement representation, the smallest (negative) number is _______ in binary and ________ in decimal and the largest (positive) number is _______ 1000000_______ in binary and _________ +63______ in decimal.

(iii) If you type the phrase Abc2 on your keyboard, the binary sequence sent to the computer using 8-bit ASCII code with the 8th bit being an even parity bit is ___01000001 11100010__01100011__10110010__. Note that the ASCII code for character 0 is 30H.