COE 205, Term 032

Computer Organization \& Assembly Programming

Quiz\# 2

Date: Sunday, March 7, 2004
Q1. Consider an 8 -bit register that has the binary number 11100010. Determine the decimal value of the number if it represents:
i. An unsigned number.
$128+64+32+2=226$
ii. A signed number in sign-magnitude representation.
$-(64+32+2)=-98$
iii. A signed number in 1's complement representation.

The 1's complement is 00011101
So, the number is -29
iv. A signed number in 2's complement representation.

The 2's complement is 00011110
So, the number is -30

Q2. Perform the following arithmetic operations assuming that numbers are represented using 8bit 2's complement representation. Indicate in your answer when an overflow occurs.
i. $7 \mathrm{~F}+01$

1
7 F
$+\quad 0 \quad 1$
80
There is overflow since the sign bit of the result is negative while it should be positive.
ii. $\mathrm{FE}-7 \mathrm{~F}$

The 2's complement of 7 F is 81

There is overflow since the sign bit of the result is positive while it should be negative.

Q3. Fill the blanks in the following questions:
(i) The binary number 01000100 represents character \qquad , and uses an Even parity bit. Note that the ASCII code of character \mathbf{A} is 41 H and that of character \mathbf{a} is 61 H .
(ii) Assuming 7-bit 2`s complement representation, the smallest (negative) number is
\qquad in binary and \qquad -64 in decimal and the largest (positive) number is \qquad
\qquad in binary and \qquad $+63$ \qquad in decimal.
(iii) If you type the phrase Abc2 on your keyboard, the binary sequence sent to the computer using 8 -bit ASCII code with the $8^{\text {th }}$ bit being an even parity bit is ___01000001 $\mathbf{1 1 1 0 0 0 1 0} \ldots \mathbf{0 1 1 0 0 0 1 1} _10110010 \ldots$. Note that the ASCII code for character 0 is 30 H .

