Name: KEY Id#

COE 205, Term 022

Computer Organization & Assembly Programming

Quiz# 2

Date: Sunday, March 16, 2003

- **Q1.** Consider an 8-bit register that has the binary number 11100010. Determine the decimal value of the number if it represents:
 - i. An unsigned number.

$$128 + 64 + 32 + 2 = 226$$

ii. A signed number in sign-magnitude representation.

$$-(64+32+2)=-98$$

iii. A signed number in 1's complement representation.

The 1's complement is 00011101 So, the number is -29

iv. A signed number in 2's complement representation.

The 2's complement is 00011110 So, the number is -30

- **Q2.** Perform the following arithmetic operations assuming that numbers are represented using 8-bit 2's complement representation. Indicate in your answer when an <u>overflow</u> occurs.
 - i. 7F + 01

There is overflow since the sign bit of the result is negative while it should be positive.

٠	•		_		$\overline{}$	_
1	1	H	Η,	_	1	н

The 2's complement of 7F is 81

There is overflow since the sign bit of the result is positive while it should be negative.

Q3.	Fill	the	blanks	in	the	follo	owing	questions:
-----	------	-----	--------	----	-----	-------	-------	------------

(i)	The binary number 01000100 represents character D , and uses an Even parity bit. Note that the ASCII code of character A is 41H and that of
cha	racter a is 61H.
	Assuming 7-bit 2's complement representation, the smallest (negative) number is1000000 in binary and64 in decimal and the largest (positive) aber is0111111 in binary and+63 in decimal.
mun	loci is in omary and+03 in decimal.
	If you type the phrase Abc2 on your keyboard, the binary sequence sent to the puter using 8-bit ASCII code with the 8 th bit being an even parity bit is 01000001
111	000100110001110110010 . Note that the ASCII code for character 0 is 30H.