COE 205, Term 051

Computer Organization \& Assembly Programming

Quiz\# 2

Date: Saturday, Oct. 1, 2005
Q1. Represent the numbers given below in Hexadecimal in the format specified in the table assuming 8-bits:

Number	Sign-Magnitude	1's Complement	2's Complement
$\mathbf{+ 2 7}$	1B	1B	1B
$\mathbf{+ 1 0 1}$	65	65	65
$\mathbf{- 2 7}$	9B	E4	E5
$\mathbf{- 1 0 1}$	E5	9 A	9 B

Q2. Determine the range of numbers in both binary and decimal that can be represented assuming 8-bit 2's complement representation.

Binary: 10000000 to 01111111
Decimal: -128 to +127
Q3. Using the 2's complement Hexadecimal representation obtained in Q1, perform the following operations and indicate if an overflow occurs or not:
i. $(\mathbf{(1 0 1)}+\mathbf{(- 2 7)}=9 B+E 5$

\quad| 9 B |
| :--- |
| $+\quad$ |
| $--------128)$ |

There is no overflow as the result is correct. Note that the sign of the result is the same as the sign of the two operands.

$$
\begin{aligned}
& \text { ii. (101) }-(\mathbf{- 2 7})=65-E 5=65+1 B \\
& \begin{array}{l}
65 \\
+\quad 1 \mathrm{~B} \\
--------\quad 80(-128)
\end{array}
\end{aligned}
$$

There is overflow as the result is incorrect. Note that the sign of the result is NOT the same as the sign of the two operands.

Q4. Determine in binary the ASCII representation of the string COE205 assuming Odd Parity. Note that the ASCII code of character A is 41 H and that of character 0 is 30 H .

C	O	E	2	0	5
01000011	01001111	00100101	00110010	10110000	10110101

