COE 205, Term 062

Computer Organization \& Assembly Programming

Quiz\# 1

Date: Saturday, March 3, 2007

Q1.What is the Instruction Set Architecture (ISA) of a computer?

The Instruction Set Architecture (ISA) of a computer consists of Instruction Set, Memory, and Programmer-accessible registers.

Q2.What is Assembly Language and how it is different from Machine Language?

Assembly language is the set of instructions a CPU can execute using symbolic names to represent operations, registers and memory locations. Each assembly language instruction corresponds to a single machine language instruction. Machine language is the set of instructions that a CPU can execute represented in binary format.

Q3.Give two advantages for programming in Assembly Language and two advantages for programming in High-Level Language.

Two advantages for programming in assembly language are:

1. Accessibility to system hardware
2. Space and time efficiency

Two advantages for programming in High-Level language are:

1. Program development is faster and program maintenance is easier
2. Programs are portable

Q4. Fill the blanks in the following questions:
(i) Assuming 8-bit 2 's complement representation, the smallest (negative) number is $\underline{10000000}$ in binary and $\underline{-128}$ in decimal and the largest (positive) number is 01111111 in binary and +127 in decimal.
(ii) Consider an 8-bit register that has the binary number 10010110. The decimal value of this number as a signed number in sign-magnitude representation is $\underline{-22}$ while in 1's complement representation it is $\underline{-105}$ and in 2's complement representation it is $\underline{-106}$.
(iii) Assuming 8-bit 2`s complement representation, the number F0 represents the decimal number -16.
(iv) The binary number 01100100 represents character \mathbf{d} and uses an ODD parity bit. Note that the ASCII code of character \mathbf{A} is 41 H and that of character \mathbf{a} is 61 H .

Q5. Perform the following arithmetic operations assuming that numbers are represented using 8bit 2's complement representation. Indicate in your answer when an overflow occurs.

i. $\quad 8 \mathrm{~F}+\mathrm{FC}=8 \mathrm{~B}$

There is no overflow since we are adding two negative numbers and we got a negative number.

ii. $6 \mathrm{E}-\mathrm{E} 0=6 \mathrm{E}+20=8 \mathrm{E}$

There is overflow since we are adding two positive numbers and we got a negative number.

