COE 205, Term 101

Computer Organization \& Assembly Programming

HW\# 3

Q.1. Consider a program that has the following data segment:

I	$E Q U$	$07 F h$
J	$D B$	$\ddots 1234$
K	$E Q U$	250
L	$D W$	$0 F F h$

Indicate whether the following are valid or invalid 8086 instructions. If invalid, give the reason:

1. MOV AL, I+1	11. MOV [SI], WORD PTR [DI-1]
2. MOV [SI], I	12. INC [DI+1]
3. MOV AX, [BL]	13. MOV DS, ES
4. MOV AX, J+2	14. INC L+1
5. MOV BX, $2^{*} \mathrm{~J}$	15. DEC Byte PTR [SI+DI]
6. MOV BL, K+6	16. ADD Byte PTR [BX], $2^{*} \mathrm{I}+1$
7. MOV L, I	17. SUB AH, [BX-SI-2]
8. MOV DS, I	18. IMUL K
9. SUB AX, DS	19. SUB CX, [AX]
10. ADD AX, J+2[BX]	20. ADC CX, [BP]2[SI]

Q.2. Suppose that you have the following initial content of the registers and memory locations:

AX $=\mathrm{FE} 14 \mathrm{H}$	$\mathrm{BX}=7 \mathrm{FEDH}$	$\mathrm{CX}=\mathrm{F} 1 \mathrm{~A} 4 \mathrm{H}$	$\mathrm{DX}=00 \mathrm{FFH}$
SI $=0010 \mathrm{H}$	$\mathrm{DI}=0020 \mathrm{H}$	$\mathrm{DS}=4000 \mathrm{H}$	

Memory Address	Contents (hex)
$2000: 0010$	FF
0011	FA
0012	BC
0013	06
0014	FE
0015	50

Show the content of the destination operand and the state of the flag bits ($\mathrm{O}, \mathrm{S}, \mathrm{Z}, \mathrm{A}, \mathrm{P}$, and C) after the execution of the following instructions. Use the initial content of the
registers and memory locations for the execution of each instruction. Suppose that CF is initially set to 1 .

1.	ADC BX, CX	6. NEG Word PTR [BX-7FDCh]
2.	INC Byte PTR [DI-16]	7. MUL DL
3.	SBB BL, AL	8. IMUL DL
4.	SUB AL, 2+[SI]	9. DIV Byte PTR [DI-13]
5.	DEC Byte PTR 4[SI]	10. IDIV CH

Q.3. Give a single 8086 instruction that performs each of the following operations. Use the appropriate type pointer whenever necessary to avoid ambiguity. CF is the value of the carry bit flag.

1. $[\mathrm{EFA} 2: \mathrm{EFA} 1] \leftarrow[\mathrm{EFA} 2: \mathrm{EFA} 1]-\mathrm{FFh}$
2. $[\mathrm{BX}] \leftarrow 0-[\mathrm{BX}]$
3. $\mathrm{BX} \leftarrow \mathrm{BX}+[\mathrm{BX}+1: \mathrm{BX}]$
4. DX: $\mathrm{AX} \leftarrow \mathrm{AX} * \mathrm{BX}$
5. $\mathrm{AH} \leftarrow \mathrm{AH}-\mathrm{CL}-\mathrm{CF}$
6. $\mathrm{BX} \leftarrow[\mathrm{DI}+\mathrm{BX}-6: \mathrm{DI}+\mathrm{BX}-7]$
Q.4. Write an 8086 assembly program that implements the following C code. Declare variables I, J, K, and L as either byte or word variables using the minimum size possible.
```
C version:
Main()
{
    int I, J, K, L;
    I=-4;
    J=30;
    K=(4*I*J)+(I+5*J)+I;
    L=K/I;
    I=I+I;
    J=J-I-1;
}
```

