COE 205, Term 991

Computer Organization \& Assembly Programming

HW\# 1

Due date: Wednesday, Sep. 22
Q.1. What is the ISA (instruction set architecture) of a computer?
Q.2. Briefly describe the main functionality of the program counter register (PC), the instruction register (IR), and the fetch-execute process in a computer.
Q.3. Describe two advantages for programming in assembly and two advantages for programming in a high-level language.
Q.4. Represent the following numbers in binary, octal, and hexadecimal. Use as many bits as needed, and approximate the fraction upto 5 digits:
(i) 123.22
(ii) 555.75
Q.5. Express the following numbers in both sign-magnitude and 2`s complement notations, assuming 16-bit representation: (i) -1111 (ii) -321 Q.6. Perform the following operations twice, once for a sign-magnitude notation and once for 2 's complement notation. Indicate in your answer when an overflow occurs: (i) \(010101+001011\) (ii) 110111-111001 Q.7. A microcontroller uses 8-bit registers. Give the following in both binary and decimal: (i) The maximum unsigned number that can be stored. (ii) The smallest (negative) number and the largest (positive) number that can be stored using the sign-magnitude notation. (iii) The smallest (negative) number and the largest (positive) number that can be stored using the 2`s complement notation.
Q.8. If you type the phrase COE-205 on your keyboard, what is the binary sequence sent to the computer using 8 -bit ASCII with the $8^{\text {th }}$ bit being an even parity bit.

