
Page 1 of 13

 May 20, 2010

COMPUTER ENGINEERING DEPARTMENT

COE 205

COMPUTER ORGANIZATION & ASSEMBLY PROGRAMMING

Major Exam II

First Semester (092)

Time: 1:00 PM-3:30 PM

Student Name : __KEY__

Student ID. : __

Question Max Points Score

Q1 28

Q2 36

Q3 12

Q4 24

Total 100

Dr. Aiman El-Maleh

Page 2 of 13

[28 Points]

(Q1) Fill the blank in each of the following:

(1) Assume that ESP=00000100H and the address of TEST is 0000300AH. After

executing the instruction CALL TEST, the content of ESP=ESP-4=000000FCH.

(2) Assume that ESP=00000100H. After executing the instruction RET 8, the

content of ESP=ESP+4+8=0000010CH.

(3) The code to Jump to label L1 if regiser AL bits 3 and 6 are 1 or bit 5 is zero is:

Test AL, 100000b

JZ L1

Test AL, 1000000b

JZ Skip

Test AL, 1000b

JNZ L1

Skip:

(4) Assuming that EAX=8765432CH and ECX=FEDBA7E4H, executing the

instruction SHRD EAX, ECX, 16 will set EAX=A7E48765H and ECX=

FEDBA7E4H.

(5) To multiply the signed content of register EAX by 33.25 without using

multiplications instructions, we use the following instructions:

MOV EBX, EAX

SHL EAX, 5

ADD EAX, EBX

SAR EBX, 2

ADD EAX, EBX

Page 3 of 13

(6) Assuming that all variables are 32-bit signed integers, the assembly code

implementing the following equation var3 = (-5*var1)/(8*var2 -10) is:

MOV EAX, -5

IMUL var1

MOV EBX, var2

SHL EBX, 3

SUB EBX, 10

IDIV EBX

MOV var3, EAX

(7) Suppose that we have a 64-bit number stored in memory in the variable I defined

as I Qword. The assembly code to multiply this number by 8 is:

MOV EAX, DWORD PTR I

MOV EBX, DWORD PTR I+4

SHLD, EBX, EAX, 3

SHL EAX, 3

MOV DWORD PTR I, EAX

MOV DWORD PTR I+4, EBX

(8) Given that MS-DOS packs the year, month, and day into 16 bits in register DX,

where bits 0 to 4 store the day, bits 5 to 8 store the month and bits 9 to 15 store the

year relative to 1980. Write assembly code to print the date in day, month and

year. For example if DX=0010011001101010, it will print 10/3/1999:

MOVZX EAX, DX

AND EAX, 11111b

CALL WriteDec

MOV AL, ‘/’

CALL WriteChar

MOVZX EAX, DX

SHR EAX, 5

AND EAX, 1111b

CALL WriteDec

MOV AL, ‘/’

CALL WriteChar

MOVZX EAX, DX

SHR EAX, 9

AND EAX, 1111111b

ADD EAX, 1980

CALL WriteDec

Page 4 of 13

[36 Points]

(Q2) Answer SIX out of the following questions. Show how you obtained your answer:

(i) Given the following definition in the data segment:

Array DWORD 0, 1, 2, 3, 4

DWORD 10,11,12,13,14

DWORD 20,21,22,23,24

DWORD 30,31,32,33,34

DWORD 40,41,42,43,44

Determine what will be displayed after executing the following code:

 mov ecx, lengthof Array

 xor esi, esi

Next:

 mov eax, lengthof Array

 mul esi

 shl eax, 2

 mov eax, Array[eax+esi*4]

 Call WriteDec

 Call CrLf

 inc esi

 loop Next

The program will print the diagonal of the array as follows:

0

11

22

33

44

Page 5 of 13

(ii) Determine what will be displayed after executing the following code:

 push 5

 push 4

 call MyProc

MyProc PROC

 push ebp

 mov ebp, esp

 sub esp, 4

 push eax

 mov DWORD PTR [ebp-4],10

 mov eax, [EBP + 8]

 sub [ebp-4], eax

 shl DWORD PTR [ebp-4], 2

 mov eax, [EBP + 12]

 add [ebp-4], eax

 shr DWORD PTR [ebp-4], 1

 mov eax, [ebp-4]

 call WriteDec

 pop eax

 mov esp, ebp

 pop ebp

 ret 8

MyProc ENDP

The program will display 14.

It will allocate a local variable and initialize it with 10. Then, it will copy into eax the second

passed parameter 4. Then, the local variable will be 10-4=6. Then, the local variable is

multiuplied by 4 i.e. its value becomes 24. The first passed parameter is moved to eax, i.e.

eax=5. The content of eax is added to the local variable which becomes 29. The local variable

is divided by 2 and becomes 14. The content of the local variable is then displayed.

Page 6 of 13

(iii) Given the following definition in the data segment:

 Array DWord 17,-10,30,-40,4,-5,8

Determine what will be displayed after executing the following code:

 xor eax, eax

 mov esi, -1

 mov ecx, lengthof Array

L1:

 inc esi

 test Array[esi*4], 8000h

 loopz L1

 jz done

 inc eax

 cmp ecx, 0

 jnz L1

done:

 call WriteDec

The program will display 3 which the number of negative nyumbers in the array.

Page 7 of 13

(iv) Determine what will be displayed after executing the following code:

 mov ecx, 5

 mov eax, 12

Next:

 cmp eax, 7

 ja default

 jmp jumptable[eax*4]

case01:

 add eax, 9

 jmp done

case23:

 add eax, 7

 jmp done

case45:

 add eax, 3

 jmp done

case67:

 add eax, 4

 jmp done

default:

 inc eax

done:

 shr eax, 1

 loop Next

 call WriteDec

exit

jumptable DWORD case01, case01, case23, case23, case45, case45, case67,

case67

The program will display 5.

First, since EAX=12, the program will jump to default and EAX becomes 13. Then,

EAX is divided by 2 and becomes 6. The loop then goes for the 2
nd

 iteration as ECX

is 4 and then it jumps to case67. EAX then becomes 10. It then gets divided by 2 and

becomes 5. The loop is repeated as ECX becomes 3. The program then jumps to

case45 and EAX becomes 8. EAX is then divided by 2 and becomes 4. The loop is

continued as ECX is 2. The program then jumps to case45 and EAX becomes 7. After

that it gets divided by 2 and becomes 3 and the loop is repeated as ECX is 1. The

program then jumps to case23 and eax becomes 10. Then, EAX becomes 5 and it gets

displayed.

Page 8 of 13

(v) Determine what will be displayed after executing the following code:

 mov eax, 3

 call MyProc

 call WriteDec

MyProc Proc

 push ebx

 cmp eax, 0

 je done

 cmp eax, 1

 je done

 dec eax

 mov ebx, eax

 call MyProc

 xchg ebx, eax

 dec eax

 call MyProc

 add eax, ebx

done:

 pop ebx

 ret

MyProc Endp

The program wuill display 2 which is the fibonacci sequence of 3.

Page 9 of 13

(vi) Given the following declaration in the data segment:

 MyNumber Byte 9 dup(0)

 Determine what will be displayed after executing the following code:

 mov ax, 0ABCDh

 xor esi, esi

 mov ecx, 8

L1: rol ax, 2

 mov bx, ax

 and bx, 3

 add bl, '0'

 mov MyNumber[esi], bl

 inc esi

 loop L1

 lea edx, MyNumber

 call WriteString

 The program will display the content of register ax in base 4 which is 22233031.

Page 10 of 13

(vii) Given the following declaration in the data segment:

 MyNumber Byte '1','2','3',0

 Determine what will be displayed after executing the following code:

 xor esi, esi

 mov eax, 0

L1: imul eax, 16

 movzx edx, MyNumber[esi]

 sub edx, '0'

 add eax, edx

 inc esi

 cmp MyNumber[esi],0

 jne L1

 dec esi

 mov ecx, 0

 mov ebx, 8

L2: mov edx, 0

 div ebx

 add dl, '0'

 mov MyNumber[esi], dl

 dec esi

 cmp eax, 0

 jnz L2

 lea edx, MyNumber

 call WriteString

The program will convert the hexadecimal number 123H into octal and will

display the number 443.

Page 11 of 13

[12 Points]

 (Q3) Write a macro, CMul, to multiply the signed content of register EAX by a constant n

passed as a aparmeter to the macro. The macro should be based on using shift and add

instructions and should not use MUL or IMUL instructions. The macro should preserve the

content of all temporary registers used.

CMul Macro n

Local Next, Skip

 PUSH EBX

 PUSH ECX

MOV EBX, n

XOR ECX, ECX

Next:

SHR EBX, 1

JNC Skip

ADD ECX, EAX

Skip:

SHL EAX, 1

CMP EBX, 0

JNE Next

MOV EAX, ECX

POP ECX

POP EBX

ENDM

Page 12 of 13

[24 Points]

 (Q4)

(i) Write a procedure, BubbleSort, to sort an array of integers in an ascending order.

The number of integers to be sorted and the address of the array to be sorted are

assumed to be passed on the stack. The procedure should maintain the content of all

registers to their state before its execution.

The pseudocode for the BublleSort procedure is given below:

 BubbleSort (ArrayPointer, ArraySize)

 pass = 1

 do {

swap_occurs = 0

 for (i= 1 to ArraySize-pass)

 if (Array[i-1] > Array[i])

 swap ith and (i-1)th elements of the array

 swap_occurs = 1

 end if

 end for

 pass = pass+1

 while (swap_occurs && pass <= ArraySize -1)

 end BubbleSort

(ii) Write a complete program, showing the place of procedure definition, to use the

procedure BubbleSort to sort the Array given below:

Array DWord 10, 2, 0, 15, 25, 30, 7, 22

Note that the Content of Array after sorting will be:

Array DWord 0, 2, 7, 10, 15, 22, 25, 30

 .DATA

Array DWord 10, 2, 0, 15, 25, 30, 7, 22

.code

main PROC

 MOV EAX, offset Array

 PUSH offset Array

 PUSH lengthof Array

 CALL BubbleSort

exit

main ENDP

BubbleSort PROC

 PUSHAD

 MOV EBP, ESP

 MOV ECX, [EBP+36]

 MOV EBX, [EBP+40]

Page 13 of 13

 MOV EAX, 1 ; pass = 1

do_while:

 XOR EDX, EDX ; swap_occurs = 0

 PUSH ECX

 SUB ECX, EAX

 MOV ESI, 1

for_loop:

 MOV EDI, [EBX+ESI*4-4]

 CMP EDI, [EBX+ESI*4]

 JNG NoSwap ; if (Array[i-1] > Array[i])

 XCHG EDI,[EBX+ESI*4] ; swap ith and (i-1)th elements of the array

 MOV [EBX+ESI*4-4], EDI

 MOV EDX, 1 ; swap_occurs = 1

NoSwap:

 INC ESI

 LOOP for_loop

 POP ECX

 INC EAX ; pass = pass+1

 CMP EDX, 0 ; while (swap_occurs && pass <= ArraySize -1)

 JE Done

 CMP EAX, ECX

 JL do_while

Done:

 POPAD

 RET 8

BubbleSort ENDP

END main

