COMPUTER ENGINEERING DEPARTMENT

COE 205

COMPUTER ORGANIZATION \& ASSEMBLY PROGRAMMING

Major Exam II
First Semester (091)
Time: 3:30 PM-6:00 PM

Student Name : \qquad KEY \qquad

Student ID. : \qquad

Question	Max Points	Score
Q1	$\mathbf{3 4}$	
Q2	$\mathbf{4 2}$	
Q3	$\mathbf{2 4}$	
Total	$\mathbf{1 0 0}$	

(Q1) Fill the blank in each of the following:
(1) Assume that $\mathrm{ESP}=00000020 \mathrm{H}$ and $\mathrm{EAX}=12345678 \mathrm{H}$. Assume that the address of MPROC is 0010005 E . After executing the instruction sequnece\{PUSH EAX, CALL MPROC $\}$ the content of $E S P=E S P-8=00000018 \mathrm{H}$.
(2) Assume that EAX=12345678H and EBX=90ABCDEFH. After executing the following sequence of instructions, the content of EAX=90ABCDEFH and $E B X=12345678 \mathrm{H}$.

PUSH EAX
PUSH EBX
POP EAX
POP EBX
(3) The code to Jump to label L1 if bits 1 and either bit 3 or bit 5 in AL are zero is:

Test AL, 00100010b
JZ L1
Test AL, 00001010b
JZ L1
(4) Assuming that EAX=8765432CH and ECX=FEDBA7E4H, executing the instruction SHL EAX, CL will set EAX= $\underline{765432 \mathrm{COH}}$ and $\mathrm{CF}=\underline{0}$.
(5) Assuming that EAX $=8765432 \mathrm{CH}$, executing the instruction SAR EAX, 4 will set $\mathrm{EAX}=\mathrm{F} 8765432 \mathrm{H}$ and $\mathrm{CF}=1$.
(6) Assuming that EAX=8765432CH, executing the instruction ROL EAX, 8 will set $\mathrm{EAX}=65432 \mathrm{C} 87 \mathrm{H}$ and $\mathrm{CF}=1$.
(7) Assuming that EAX=8765432CH and ECX=FEDBA7E4H, executing the instruction SHLD EAX, ECX, 12 will set EAX=5432CFEDH and ECX= FEDBA7E4H.
(8) To multiply the content of register EAX by 35.5 without using multiplications instructions, we use the following instructions:

MOV EBX, EAX
MOV ECX, EAX
SHL EAX, 5
SHL ECX, 2
ADD EAX, ECX
SAR EBX, 1
SUB EAX, EBX

(9) Assuming that $\mathrm{AX}=\mathrm{FFF} 0 \mathrm{H}$ and $\mathrm{BX}=\mathrm{FFF9H}$, executing the instruction IDIV BL will result in $\mathrm{AX}=\mathrm{FE} 02$.
(10) Assuming that $\mathrm{AX}=\mathrm{FFF} 0 \mathrm{H}$ and $\mathrm{BX}=\mathrm{FFF} 8 \mathrm{H}$, executing the instruction IMUL BX will result in $\mathrm{AX}=\underline{0080 \mathrm{H}}$ and $\mathrm{CF}=\underline{0}$.
(11) Assuming that all variables are 32-bit signed integers, the assembly code implementing the following equation var5 = (-3*var1*var2)/(4*var3 + var4) is:

MOV EAX, var1
MOV EDX, EAX
SHL EAX, 1
ADD EAX, EDX
NEG EAX
IMUL var2
MOV ECX, var3
SHL ECX, 2
ADD ECX, var4
IDIV ECX
MOV var5, EAX
(12) Given that the CPU is receiving a byte in AL register from the printer. Assume that bits 3 to 6 represent a number. The assembly code to display the decimal value of this number is:

SHR AL, 3
AND AL, 0FH
MOVZX EAX, AL
Call WriteDec
(13) Suppose that we would like to encrpyt text according to an encryption table. Part of the encryption table is shown below. The assembly code to encrpyt a character in register AL according to the encrption table below and store the encrypted character in the same register is:

' A '	'B'	'C'	'D'	'E'	'F'	'G'	'H'	'I'	\ldots
'E'	'Z'	'I'	'X'	'M'	'A'	'C'	'L'	'F'	

We will define the encryption table as follows:
EncTable BYTE ‘EZIXMACLF...’
The encryption code will be as follows:
SUB AL, 'A'
MOVZX EAX, AL
MOV AL, EncTable[EAX]
(Q2) Answer SIX out of the following questions. Show how you obtained your answer:
(i) Given the following data declarations: TABLE1 BYTE 'COE 205 Exam II’ and TABLE2 BYTE ‘aeoui’

Determine the content of register AH after executing the following code:

```
    XOR AH, AH
    MOV ESI, offset TABLE2
    MOV ECX, }
Top:
    PUSH ECX
    MOV ECX, lengthof TABLE1
    MOV EBX, offset TABLE1
    DEC EBX
    MOV DL, [ESI]
Next:
    JECXZ ENL
    INC EBX
    MOV AL, [EBX]
    OR AL, 20H
    CMP AL, DL
    LOOPNE Next
    JNE ENL
    INC AH
    JMP Next
ENL:
    POP ECX
    INC ESI
    LOOP Top
```

The code counts the number of vowel characters in TABLE1 and stores the count in register AH. Thus, AH=6.
(ii) Determine what will be displayed after executing the following code:

```
GDisp MACRO PG
LOCAL E1, E2, E3, E4, E5
    MOV ESI, PG
    CMP ESI, }9
    JBE E1
    MOV AL, 'A'
    JMP E5
E1:
        CMP ESI, }8
        JBE E2
        MOV AL, 'B'
        JMP E5
E2:
        CMP ESI, 70
        JBE E3
        MOV AL, 'C'
        JMP E5
E3:
        CMP ESI, }6
        JBE E4
        MOV AL, 'D'
        JMP E5
E4:
    MOV AL, 'F'
E5:
    CALL WriteChar
    CALL Crlf
ENDM
        GDisp }8
        GDisp }6
```

The code will display the following the grades correspond to the passed mark and hence will display:
B
D
(iii) Given the following definition in the data segnment N DWORD 8 DUP (1), determine what will be displayed after executing the following code:

```
    MOV ESI, 2
    MOV ECX, }
F1:
    MOV EAX, N[ESI*4-4]
    ADD EAX, N[ESI*4-8]
    MOV N[ESI*4], EAX
    INC ESI
    LOOP F1
    XOR ESI, ESI
    MOV ECX, }
F2:
    MOV EAX, N[ESI*4]
    CALL WriteDec
    CALL Crlf
    INC ESI
    LOOP F2
```

The code will first compute the eight elements of the array according to the Fibonacci sequence and then display them as follows:
(iv) Determine what will be displayed after executing the following code:

MOV ESI, 654
MOV EBX, 9
W1: CMP ESI, 9
JBE EndW1
XOR EDI, EDI
W2: CMP ESI, 0
JBE Endw2
XOR EDX, EDX
MOV EAX, ESI
DIV EBX
ADD EDI, EDX
MOV ESI, EAX
JMP W2
Endw2:
MOV ESI, EDI
JMP W1
Endw1:
MOV EAX, ESI
CALL WriteDec
The code will extract the remainders of dividing the number by 9 and then add the digits together. If the result is greater than 9 the process is repeated. In the first iteration, $6+0+8=14$. In the second iteration $5+1=6$. Thus, the result dispalyed will be 6 .
(v) Determine what will be displayed after executing the following code:

PUSH 1
CALL HILL

HILL PROC

MOV EAX, [ESP+4]
CALL WriteDec
CALL Crlf
CMP EAX, 5
JA Endif1
MOV EBX, 3
MUL EBX
DEC EAX
PUSH EAX
CALL HILL
MOV EAX, [ESP+4]
CALL WriteDec
CALL Crlf
Endif1:
RET 4
HILL ENDP
The code will display the following:
1
2
5
14
5
2
1
(vi) Determine what will be displayed after executing the following code:

MOV ESI, 14
MOV EDI, 21
CALL MTest
MOV EAX, ECX
Call WriteDec
MTest PROC
CMP ESI, 0
JNE Skip2
MOV ECX, EDI
JMP End1
Skip2:
CMP EDI, 0
JNE Skip3
MOV ECX, ESI
JMP End1
Skip3:
MOV EAX, ESI
XOR EDX, EDX
DIV EDI
MOV ESI, EDI
MOV EDI, EDX
CALL MTest
End1:
RET
MTest ENDP

The code will display the greatest comon divisor between the two numbers in ESI and EDI and hence will display the result as 7 .
(vii) Given the following declaration in the data segment:

X DWORD 1, 5, 10, 20, 32, 50
Determine what will be displayed after executing the following code:

LEA EBX, X
MOV ESI, 0
MOV EDI, 5
MOV EDX, 32
CALL BSP
CALL WriteDec

```
BSP PROC
    CMP ESI, EDI
    JG RET1
    MOV ECX, ESI
    ADD ECX, EDI
    SHR ECX, 1
    CMP [EBX+ECX*4], EDX
    JNE SKIP
    MOV EAX, ECX
    RET
SKIP:
    JG SKIP2
    MOV ESI, ECX
    INC ESI
    CALL BSP
    RET
SKIP2:
    MOV EDI, ECX
    DEC EDI
    CALL BSP
    RET
RET1:
    MOV EAX, -1
    RET
BSP ENDP
```

The procedure implements the binary search algorithm and the code returns the index of the number 32 and hence it will display 4.
(i) Write a procedure, ShellSort, to sort an array of integers (i.e. 32-bit signed numbers) in an ascending order. The number of integers to be sorted and the address of the array to be sorted are assumed to be passed on the stack. The procedure should maintain the content of all registers to their state before its execution. Do not use the USE directive, local directive, pusha and popa instructions in your solution.

The pseudocode for the ShellSort procedure is given below:

```
ShellSort (Array, Size){
    hmax=Size/9;
    for (h=1;h<=hmax; h=3*h+1);
    for (; h>0;h=h/3){
            for (i=h; i<size; i++){
                v = Array[i];
                j=i;
                while(j >= h && v < Array[j-h]){
                    Array[j] = Array[j-h];
                        j = j-h;
            }
            Array[j] = v;
        }
    }
}
```

(ii) Write a complete program, showing the place of procedure definition, to use the procedure ShellSort to sort the Array given below:

Array Dword 10, 2, 0, 15, 25, 30, 7, 22, -1, -5
Note that the Content of Array after sorting will be:
Array Dword -5, -1, 0, 2, 7, 10, 15, 22, 25, 30
. 686
.MODEL FLAT, STDCALL
.STACK
INCLUDE Irvine32.inc
.DATA
Array DD 10, 2, 0, 15, 25, 30, 7, 22, -1, -5
.CODE
main PROC
PUSH offset Array
PUSH lengthof Array
CALL ShellSort

ShellSort PROC PUSH EBP MOV EBP, ESP PUSH EAX ; save registers PUSH EBX PUSH ECX PUSH EDX PUSH ESI PUSH EDI

```
MOV ECX, [EBP+8] ; size of array
```

MOV EDX, [EBP+12] ; address of array
MOV EAX, ECX
MOV BL, 9
DIV BL ; hmax=Size/9
MOVZX EDI, AL
MOV ESI, 1 ; for ($\mathrm{h}=1$; $\mathrm{h}<=\mathrm{hmax} ; \mathrm{h}=3 * \mathrm{~h}+1$);

For1: CMP ESI, EDI JA Endfor1 MOV BL, 3 MOV EAX, ESI MUL BL
INC EAX ;h=3*h+1
MOV ESI, EAX
JMP For1

Endfor1:
For2:
CMP ESI, 0
JBE Endfor2
MOV EAX, ESI ;i=h
For3: CMP EAX, ECX
JAE Endfor3
MOV EBX, [EDX+EAX*4] ; v = Array[i]
MOV EBP, EAX ; j=i
Whileloop:
CMP EBP, ESI ; while(j >= h \& \& v < Array[j-h])
JB EndWhile
MOV EDI, EBP
SUB EDI, ESI ; j-h
CMP EBX, [EDX+EDI*4] ; v < Array[j-h]
JGE EndWhile
MOV EDI, [EDX+EDI*4] ; Array[j] = Array[j-h];
MOV [EDX+EBP*4], EDI
SUB EBP, ESI
JMP Whileloop
EndWhile:
MOV [EDX+EBP*4], EBX
INC EAX
JMP For3

Endfor3:
MOV BL, 3
MOV EAX, ESI
DIV BL
MOVZX ESI, AL
JMP For2
Endfor2:

POP EDI	; restore registers
POP ESI	
POP EDX	
POP ECX	
POP EBX	
POP EAX	
POP EBP	

RET 8
ShellSort ENDP
END main

