
Page 1 of 10

 June 1, 2009

COMPUTER ENGINEERING DEPARTMENT

COE 205

COMPUTER ORGANIZATION & ASSEMBLY PROGRAMMING

Major Exam II

Second Semester (082)

Time: 7:00 PM-9:30 PM

Student Name : __KEY___

Student ID. : __

Question Max Points Score
Q1 40
Q2 36
Q3 24

Total 100

Dr. Aiman El-Maleh

Page 2 of 10

[40 Points]

(Q1) Fill the blank in each of the following:

(1) Assume that ESP=00000020H, EAX=12345678H and EBX=90ABCDEFH. After
executing the instruction PUSH EAX, the content of ESP=ESP-4=0000001CH
and EAX=12345678H.

(2) Assume that ESP=00000020H, EAX=12345678H and EBX=90ABCDEFH.
After executing the following sequence of instructions, the content of ESP= ESP-
4-4+4=0000001CH and EAX=90ABCDEFH.

PUSH EAX
PUSH EBX
POP EAX

(3) Assuming that ESP=00000020H, after executing the instruction RET 12, the
content of ESP= ESP+4+12=00000030H.

(4) Assuming that ESP=00000020H, after executing the instruction Call MyProc, the
content of ESP= ESP-4=0000001CH.

(5) Assuming thar register AL contains an alphabatic character, to convert the
content of register AL to lower case, we use the following instruction OR AL,
20h.

Page 3 of 10

(6) The code to Jump to label L1 if bits 0, 2, and 5 in AL are all set is:

AND AL, 00100101b
 CMP AL, 00100101b
 JE L1

(7) The assembly code given below implements the high-level statement

if ((AL > BL) && (BL > CL)) {X = 1;}; unsigned comparison

CMP AL, BL

JBE NEXT

CMP BL, CL

JBE NEXT

MOV X,1

NEXT:

(8) The assembly code given below implements the high-level statement

if ((AL > BL) || (AL > CL)) {X = 1;} ; signed comparison

CMP AL, BL

 JG L1
 CMP AL,CL
 JLE NEXT

L1: MOV X,1
NEXT:

(9) The assembly code given below implements the high-level statement

while (EBX <= VAR1) { ; unsigned comparison

 EBX = EBX + 5;

 VAR1 = VAR - 1

}

CMP EBX,VAR1
JA NEXT

TOP: ADD EBX, 5
DEC VAR1
CMP EBX, VAR1
JBE TOP

NEXT:

Page 4 of 10

(10) Assuming that AX=5678H and CL=85H, executing the instruction SHL AX,
CL will set AX=CF00H and CF=0.

(11) Assuming that AX=8678H and CL=0CH, executing the instruction SAR AX,
CL will set AX=FFF8H and CF=0.

(12) Assuming that AX=6789H and CL=20H, executing the instruction ROL AX,
CL will set AX=6789H and CF=unchanged.

(13) Assuming that AX=1234H and BX=5678H, executing the instruction SHRD
AX, BX, 8 will set AX=7812H and BX=5678H.

(14) To multiply the content of register EAX by 23 without using multiplications
instructions, we use the following instructions:

MOV EBX, EAX

SHL EBX, 3 ; EBX = 8 * EAX

SUB EBX, EAX ; EBX = 7 * EAX

SHL EAX, 4 ; EAX = 16 * EAX

ADD EAX, EBX ; EAX = 23 * EAX

Page 5 of 10

(15) Assuming that AX=02ECH and BX=0020H, executing the instruction DIV
BL will result in AX=0C17.

(16) Assuming that AX=FFF4H and BX=FFFBH, executing the instruction IDIV
BL will result in AX=FE02.

(17) Assuming that AX=02ECH and BX=0020H, executing the instruction MUL
BX will result in AX=5D80 and CF=0.

(18) Assuming that AX=FFF4H and BX=FFFBH, executing the instruction IMUL
BX will result in AX=003C and CF=0.

(19) Macros are more efficient than procedures in execution time and less efficient

in code size.

(20) We can define the macro SAVE_REGS to save only the registers passed as
arguments by pushing them on the stack as follows:

SAVE_REGS MACRO REGS
 IRP D, <REGS>
 PUSH D
 ENDM
 ENDM

Page 6 of 10

[36 Points]

(Q2) Answer the following questions. Show how you obtained your answer:
(i) Given that TABLE is defined as: TABLE Byte ‘Ahmad Ali Anas’

Determine the content of register AH after executing the following code:

XOR AH, AH
MOV ECX, lengthof TABLE
LEA EBX, TABLE
DEC EBX

Next: JECXZ ENL
INC EBX

 MOV AL, [EBX]
 OR AL, 20H

CMP AL, `a`
LOOPNE Next
JNE ENL
INC AH
JMP Next

 ENL:

The content of register AH will be 5 as this program counts the number of
occurrences of either character ‘a’ or character ‘A’.

(ii) Determine the content of registers EAX and EBX after exeucting the following
code:

MOV EAX, 7532h
MOV ECX, 32
XOR EBX, EBX

Next:
ROL EAX, 1
ADC EBX, 0
LOOP Next

The content of EBX will be 8 which is the count of the number of 1’s in EAX.
However, the content of EAX will not change.

Page 7 of 10

(iii) Determine what will be displayed after executing the following code:

 MOV EAX, 0F5h
 XOR ECX, ECX
 MOV EBX, 10
L1: XOR EDX, EDX
 DIV EBX
 ADD DL, '0'
 PUSH EDX
 INC ECX
 CMP EAX, 0
 JNZ L1
L2: POP EAX
 Call WriteChar
 LOOP L2

The code displays the decimal content of register EAX which is 245.

(iv) Determine what will be displayed after executing the following code:

MOV EAX, 1
JMP MT[EAX*4]

L1: MOV AL, 'C'
JMP EL

L2: MOV AL, 'O'
JMP EL

L3: MOV AL, 'E'
EL: Call WriteChar

exit
MT DWORD L1, L2, L3

 The code will display character ‘O’.

Page 8 of 10

(v) Determine what will be displayed after executing the following code:

PUSH 4
PUSH 3
CALL MYPROC
exit
MYPROC:
 JMP SKIP
 MSG BYTE 10, 13, "Greater!!", 0
 BYTE 10, 13, "Smaller!!", 0
 Skip:
 MOV EBP, ESP
 LEA EDX, MSG
 MOV ESI, [EBP+4]
 MOV EDI, [EBP+8]
 CMP ESI, EDI
 JG Display
 ADD EDX, lengthof MSG
Display:
 Call WriteString
 RET 8

The procedure MYPROC gets the two parameters passed from the stack i.e. 3
and 4 and compares the second parameter with the first. If the second
parameter is greater than the first, it will print in a new line Greater!!,
otherwise it will print in a new line Smaller!!. In this case, since 3 is less than
4, it will print: Smaller!!.

(vi) Determine what will be displayed after executing the following code:

DDIV MACRO X, Y

 MOV EAX, X
 MOV EBX, Y
 XOR EDX, EDX
 DIV EBX
 CALL WriteDec
 MOV AL, '.'
 CALL WriteChar
 MOV EAX, 10
 MUL EDX
 DIV EBX
 CALL WriteDec

ENDM

DDIV 15, 6

This macro dispalys the result of dividing X by Y within a single decimal
fraction digit. Thus, it will display 2.5.

Page 9 of 10

[24 Points]

 (Q3)

(i) Write a procedure, SelectionSort, to sort an array of integers (i.e. 32-bit signed
numbers) in an ascending order. The number of integers to be sorted and the address
of the array to be sorted are assumed to be passed on the stack. The procedure should
maintain the content of all registers to their state before its execution. Do not use the
USE directive, local directive, pusha and popa instructions in your solution.

The pseudocode for the SelectionSort procedure is given below:

 SelectionSort (Array, Size)
 for (position= 0 to Size-2)
 MinValue = Array[position]
 MinPosition = position
 for (j=position+1 to Size-1)
 if (Array[j] < MinValue) then
 MinValue = Array[j]
 MinPosition = j
 end if
 end for
 if (position ≠ MinPosition) then
 Array[MinPosition] = Array[Position]
 Array[Position] = MinValue
 end if
 end for
 end SelectionSort

(ii) Write a complete program, showing the place of procedure definition, to use the
procedure SelectionSort to sort the Array given below:

Array Dword 10, 2, 0, 15, 25, 30, 7, 22

Note that the Content of Array after sorting will be:
Array Dword 0, 2, 7, 10, 15, 22, 25, 30

.686
.MODEL FLAT, STDCALL
.STACK
INCLUDE Irvine32.inc
.DATA
Array DD 10, 2, 0, 15, 25, 30, 7, 22

.CODE
main PROC

 PUSH offset Array
 PUSH lengthof Array
 CALL SelectionSort

 exit ; exit to operating system
main ENDP

Page 10 of 10

 SelectionSort PROC
 PUSH EBP ; save registers

 MOV EBP, ESP
 PUSH EAX
 PUSH EBX
 PUSH ECX
 PUSH EDX
 PUSH ESI
 PUSH EDI

 MOV ESI, [EBP+8] ; size of array
 MOV EBX, [EBP+12] ; address of array
 DEC ESI ; ESI=size-1
 MOV EDI, ESI
 DEC EDI ; EDI=size-2
 XOR ECX, ECX ; position
 FOR_LOOP: ; for (position= 0 to Size-2)
 CMP ECX, EDI
 JG END_FOR_LOOP
 MOV EAX, [EBX+ECX*4] ; EAX= MinValue
 MOV EDX, ECX ; EDX= MinPosition
 PUSH ECX ; save postion

 INC ECX ; 2nd for loop ECX=j
 FOR_LOOP2: ; for (j=position+1 to Size-1)
 CMP ECX, ESI
 JG END_FOR_LOOP2
 CMP [EBX+ECX*4], EAX
 JGE END_IF
 MOV EAX, [EBX+ECX*4] ; MinValue=Array[j]
 MOV EDX, ECX ; MinPosition=j
 END_IF:
 INC ECX
 JMP FOR_LOOP2
 END_FOR_LOOP2:
 POP ECX ; restore position
 CMP ECX, EDX ; if (position != MinPosition)
 JE END_IF2
 MOV EBP, [EBX+ECX*4] ; Array[MinPosition] =

 ; Array[Position]
 MOV [EBX+EDX*4], EBP
 MOV [EBX+ECX*4], EAX ; Array[Position] = MinValue
 END_IF2:
 INC ECX
 JMP FOR_LOOP
 END_FOR_LOOP:
 POP EDI ; restore registers
 POP ESI
 POP EDX
 POP ECX
 POP EBX
 POP EAX
 POP EBP

 RET 8
 SelectionSort ENDP
END main

