COMPUTER ENGINEERING DEPARTMENT

COE 205

COMPUTER ORGANIZATION \& ASSEMBLY PROGRAMMING

Major Exam II

First Semester (092)
Time: 1:00 PM-3:30 PM

Student Name : \qquad

Student ID \qquad

Question	Max Points	Score
Q1	$\mathbf{2 8}$	
Q2	$\mathbf{3 6}$	
Q3	$\mathbf{1 2}$	
Q4	$\mathbf{2 4}$	
Total	$\mathbf{1 0 0}$	

(Q1) Fill the blank in each of the following:
(1) Assume that $\mathrm{ESP}=00000100 \mathrm{H}$ and the address of TEST is 0000300AH. After executing the instruction CALL TEST, the content of ESP=
(2) Assume that $\mathrm{ESP}=00000100 \mathrm{H}$. After executing the instruction RET 8, the content of ESP= \qquad .
(3) The code to Jump to label L1 if regiser AL bits 3 and 6 are 1 or bit 5 is zero is:
(4) Assuming that EAX=8765432CH and ECX=FEDBA7E4H, executing the instruction SHRD EAX, ECX, 16 will set EAX= and ECX= \qquad _.
(5) To multiply the signed content of register EAX by 33.25 without using multiplications instructions, we use the following instructions:
(6) Assuming that all variables are 32-bit signed integers, the assembly code implementing the following equation $\operatorname{var} 3=\left(-5^{*} \operatorname{var} 1\right) /\left(8^{*} \operatorname{var} 2-10\right)$ is:
(7) Suppose that we have a 64-bit number stored in memory in the variable I defined as I Qword. The assembly code to multiply this number by 8 is:
(8) Given that MS-DOS packs the year, month, and day into 16 bits in register DX, where bits 0 to 4 store the day, bits 5 to 8 store the month and bits 9 to 15 store the year relative to 1980. Write assembly code to print the date in day, month and year. For example if $D X=0010011001101010$, it will print 10/3/1999:
(Q2) Answer SIX out of the following questions. Show how you obtained your answer:
(i) Given the following definition in the data segment:

Array DWORD 0, 1, 2, 3, 4
DWORD 10,11,12,13,14
DWORD 20,21,22,23,24
DWORD 30,31,32,33,34
DWORD 40,41,42,43,44

Determine what will be displayed after executing the following code:
mov ecx, lengthof Array
xor esi, esi
Next:
mov eax, lengthof Array
mul esi
shl eax, 2
mov eax, Array[eax+esi*4]
Call WriteDec
Call CrLf
inc esi
loop Next
(ii) Determine what will be displayed after executing the following code:
push 5
push 4
call MyProc
MyProc PROC
push ebp
mov ebp, esp
sub esp, 4
push eax
mov DWORD PTR [ebp-4], 10
mov eax, [EBP + 8]
sub [ebp-4], eax
shl DWORD PTR [ebp-4], 2
mov eax, [EBP + 12]
add [ebp-4], eax
shr DWORD PTR [ebp-4], 1
mov eax, [ebp-4]
call WriteDec
pop eax
mov esp, ebp
pop ebp
ret 8
MyProc ENDP
(iii) Given the following definition in the data segment:

Array DWord 17,-10,30,-40,4,-5,8

Determine what will be displayed after executing the following code:
xor eax, eax
mov esi, -1
mov ecx, lengthof Array
L1:
inc esi
test Array[esi*4], 8000h
loopz L1
jz done
inc eax
cmp ecx, 0
jnz L1
done:
call WriteDec
(iv) Determine what will be displayed after executing the following code:
movecx, 5
mov eax, 12
Next:
cmp eax, 7
ja default
jmp jumptable[eax*4]
case01:
add eax, 9
jmp done
case 23 :
add eax, 7
jmp done
case45:
add eax, 3
jmp done
case67:
add eax, 4 jmp done
default:
inc eax
done:
shr eax, 1
loop Next call WriteDec
exit
jumptable DWORD case01, case01, case23, case23, case45, case45, case67, case67
(v) Determine what will be displayed after executing the following code:

> mov eax, 3
> call MyProc
> call WriteDec

MyProc Proc
push ebx
cmp eax, 0
je done
cmp eax, 1
je done
dec eax
mov ebx, eax
call MyProc
xchg ebx, eax
dec eax
call MyProc
add eax, ebx
done:
pop ebx
ret
MyProc Endp
(vi) Given the following declaration in the data segment:

MyNumber Byte 9 dup(0)
Determine what will be displayed after executing the following code:

```
mov ax, 0ABCDh
xor esi, esi
mov ecx, }
L1: rol ax, 2
mov bx, ax
and bx,3
add bl, '0'
mov MyNumber[esi], bl
inc esi
loop L1
lea edx, MyNumber call WriteString
```

(vii) Given the following declaration in the data segment:

MyNumber Byte '1','2','3',0
Determine what will be displayed after executing the following code:

```
    xor esi, esi
    mov eax,0
L1: imul eax, 16
    movzx edx, MyNumber[esi]
    sub edx, '0'
    add eax, edx
    inc esi
    cmp MyNumber[esi],0
    jne L1
    dec esi
    mov ecx,0
    mov ebx, }
L2: mov edx, 0
div ebx
add dl, '0'
mov MyNumber[esi], dl
dec esi
cmp eax,0
jnz L2
lea edx, MyNumber
call WriteString
```

(Q3) Write a macro, CMul, to multiply the signed content of register EAX by a constant \mathbf{n} passed as a aparmeter to the macro. The macro should be based on using shift and add instructions and should not use MUL or IMUL instructions. The macro should preserve the content of all temporary registers used.
(i) Write a procedure, BubbleSort, to sort an array of integers in an ascending order. The number of integers to be sorted and the address of the array to be sorted are assumed to be passed on the stack. The procedure should maintain the content of all registers to their state before its execution.

The pseudocode for the BublleSort procedure is given below:

```
BubbleSort (ArrayPointer, ArraySize)
    pass \(=1\)
    do \{
        swap_occurs \(=0\)
        for ( \(\mathrm{i}=1\) to ArraySize-pass)
            if (Array[i-1] > Array[i])
                swap ith and (i-1)th elements of the array
                swap_occurs = 1
                end if
            end for
            pass = pass+1
        while (swap_occurs \& \& pass <= ArraySize -1)
end BubbleSort
```

(ii) Write a complete program, showing the place of procedure definition, to use the procedure BubbleSort to sort the Array given below:

Array DWord 10, 2, 0, 15, 25, 30, 7, 22
Note that the Content of Array after sorting will be:
Array DWord 0, 2, 7, 10, 15, 22, 25, 30

