
Page 1 of 11

 December 31, 2007

COMPUTER ENGINEERING DEPARTMENT

COE 205

COMPUTER ORGANIZATION & ASSEMBLY PROGRAMMING

Major Exam II

First Semester (071)

Time: 7:00 PM-9:30 PM

Student Name : __

Student ID. : __

Question Max Points Score
Q1 30
Q2 10
Q3 25
Q4 15
Q5 20

Total 100

Dr. Aiman El-Maleh

Page 2 of 11

[30 Points]

(Q1) Determine whether the following is true or false, and if it is false correct it:

(1) (True, False) Assume that the instruction JMP NEXT is at offset address
000000A1H in the code segment, its size is 2 bytes, and the label NEXT is at
offset 00000020H. Then, the address stored in the assembled instruction for the
label NEXT, is 7DH.

(2) (True, False) After executing the instruction SAL AX, 2, the content of
register AX is equal to 2*AX, for both signed and unsigned content.

(3) (True, False) Assuming that EBX=FFFFFFFE and ESI=00000010, the
address of the source operand in this instruction MOV AL, [EBX+ESI*2-5] is
00000019 and its addressing mode is Indexed.

(4) (True, False) Given that EAX=FFFF5783, executing the instruction CWD
will make the content of EAX=00005783.

(5) (True, False) The conditional jump instructions JB and JC are equivalent.

(6) (True, False) The instruction IN CL, DX inputs the byte whose port address
is in DX to register CL.

(7) (True, False) The code given below implements the conditional statement

 if ((CX < 1) AND (AX > 100)) Then CX=0

 CMP CX, 1
 JL Zero_index
 CMP AX, 100
 JLE end_if
 Zero_index:
 XOR CX, CX

End_if:

Page 3 of 11

(8) (True, False) Assuming that AX=0FFFH and BX=100F, executing the
instruction SHLD AX, BX, 4 will set AX=FFF1 and BX=00F0.

(9) (True, False) The interrupt flag (IF) is used to mask all kinds of interrupts.

(10) (True, False) In real address mode, the address of the interrupt service
routine for INT 21H is stored in the interrupt vector table (IVT) at entry 84H.

(11) (True, False) Assuming that AL contains an Alphabatic character, the
instruction AND AL, 0DFH will guarantee that the character in AL is an upper
case character. Note that the ASCII code of character ‘A’ is 41H while that of
character ‘a’ is 61H.

(12) (True, False) Assuming that AL=91H, executing the instruction SAR AL, 33
will make AL=48H.

(13) (True, False) Assuming that AX=1234H and DX=0001H, executing the
sequence of instructions: {PUSH DX; PUSH AX; POP EAX} will result in
EAX=00011234H.

(14) (True, False) Assuming that AX=00F2H and BX=0008H, executing the
instruction DIV BL will result in AX=1E02H.

(15) (True, False) Executing the instruction IRET pops one double word from the
stack and stores it into EIP.

Page 4 of 11
[10 Points]

(Q2) Suppose that you have the following initial content of registers and memory after
fetching each of the instructions shown below:

EAX=00001F20H EBX=FFFFFC55H ESP=00001000H EIP=000030B0H

Determine the content of ESP, modified registers, modified flags, and modified
memory locations after the execution of each of the following instructions starting
from the initial content of the registers and memory for the execution of each
instruction.

 (i) POP EAX.

 (ii) PUSH BX.

 (iii) Call Sub, where Sub is at an offset address
00001000H.

 (iv) RET 2.

Memory Location Content
00000FFA FF
00000FFB 10
00000FFC 20
00000FFD 30
00000FFE 40
00000FFF 50
00001000 60
00001001 70
00001002 80
00001003 90
00001004 A0
00001005 B0
00001006 C0

Page 5 of 11
[25 Points]

(Q3) Answer the following questions. Show how you obtained your answer:

(i) Given that TABLE1 and TABLE2 are defined as:

TABLE1 BYTE ‘I like COE 205’
TABLE2 BYTE ‘I like COE 308’

Determine the content of AX after executing the following code:

 MOV ECX, lengthof TABLE1
 MOV EBX, -1
 XOR AX, AX
AGAIN: JECXZ DONE
 INC EBX
 MOV DL, TABLE1[EBX]
 CMP DL, TABLE2[EBX]
 LOOPE AGAIN
 JE DONE
 INC AX
 JMP AGAIN
DONE:

(ii) Given that ARRAY is defined as: ARRAY BYTE ‘ABCDEF’

Determine the content of ARRAY after executing the following code:

 PUSH DS
 POP ES
 STD
 LEA ESI, ARRAY[4]
 LEA EDI, ARRAY[5]
 MOV BH, [EDI]
 MOV ECX, 5
 REP MOVSB
 MOV [EDI], BH

Page 6 of 11

(iii) Given that TABLE is defined as shown below:

TABLE BYTE 16 DUP(?)

Determine the content of TABLE after executing the following code:

MOV AX, 0E765H
MOV ECX, 16
LEA EBX, TABLE

AGAIN: XOR DL, DL
 ROL AX, 1
 ADC DL, ‘0’

MOV [EBX], DL
INC EBX

 LOOP AGAIN

(iv) Determine the content of register EAX after exeucting the following code:

MOV EAX, 739
MOV EBX, 10

Next:
 XOR ECX, ECX
Again:
 XOR EDX, EDX
 DIV EBX
 ADD ECX, EDX
 TEST EAX, EAX
 JNZ Again
 MOV EAX, ECX
 CMP EAX, 9
 JA Next

Page 7 of 11

(v) Determine the content of register EAX after executing the fllowing code:

.686

.MODEL FLAT, STDCALL

.STACK

INCLUDE Irvine32.inc
.DATA
TABLE DWORD -10, 20, 30, -50, 66, 12, 330, 1
.CODE
main PROC

PUSH offset TABLE ; pushed as 32-bit
PUSH lengthof TABLE ; pushed as 32-bit
CALL MYPROC
exit
main ENDP
MYPROC:
 MOV EBP, ESP
 PUSH EBX
 PUSH ECX
 MOV ECX, [EBP+4]
 MOV EBX, [EBP+8]
 MOV EAX, [EBX]
 DEC ECX
 ADD EBX, 4
NEXT:
 CMP EAX, [EBX]
 JL SKIP
 MOV EAX, [EBX]
SKIP:
 ADD EBX, 4
 LOOP NEXT
 POP ECX
 POP EBX
 RET 8
END main

Page 8 of 11

[15 Points]

 (Q4)

(i) Write a procedure DISPAVG that receives as arguments the address of an array
of unsigned integers (i.e. DWORD), Array, and the number of elements in the
array, Size. The procedure will then compute the average of the numbers in the
array and display it within a single decimal fraction digit. The procedure should
preserve the content of all registers used.

(ii) Use the procedure DISPAVG to display the average of the given array

Array DWORD 15, 20, 30, 40
Note that your procedure should display the following in a new line:
Average = 26.2

Note that the procedure WriteDec can be used for displaying the content of EAX in
unsigned decimal format to standard output. The procedure WriteString writes a
null-terminated string whose address is stored in EDX to standard output. The
procedure WriteChar writes the character in register AL to standard output. The
procedure Crlf writes end of line sequence (CR, LF) to standard output.

Page 9 of 11

Page 10 of 11

[20 Points]

 (Q5)

(i) Write a procedure BinarySearch to search an array which has been previously
sorted in an ascending order. Each element in the array is a 32-bit signed integer.
Three parameters should be passed on the stack: the address of the array to be
searched, the size (number of elements) of the array, and the number to be searched.
If the numer is found then BinarySearch returns in the EAX register the position of
the number in the array. Otherwise, -1 is returned in EAX. All registers except EAX
must be preserved by the procedure.

The pseudocode for the BinarySearch procedure is given below:

 BinarySearch (array, size, number) {
 lower = 0;
 upper = size-1;
 while (lower <= upper) {
 middle = (lower + upper)/2;
 if (number == array[middle])
 return middle;
 else if (number < array[middle])
 upper = middle–1;
 else
 lower = middle+1;
 }
 return -1;

}

(ii) Write a complete program to use the procedure BinarySearch to search for the
number 3 in the sorted array given below:

Array DWORD 1, 3, 4, 5, 9, 11, 20, 29

Note that the size of the array in this case is 8 and the BinarySerach
procedure should return the position of number 3 as 1.

Page 11 of 11

