COMPUTER ENGINEERING DEPARTMENT

COE 205

COMPUTER ORGANIZATION \& ASSEMBLY PROGRAMMING

Major Exam II

First Semester (071)
Time: 7:00 PM-9:30 PM

Student Name : \qquad

Student ID. : \qquad

Question	Max Points	Score
Q1	$\mathbf{3 0}$	
Q2	$\mathbf{1 0}$	
Q3	$\mathbf{2 5}$	
Q4	$\mathbf{1 5}$	
Q5	$\mathbf{2 0}$	
Total	$\mathbf{1 0 0}$	

(Q1) Determine whether the following is true or false, and if it is false correct it:
(1) (True, False) Assume that the instruction JMP NEXT is at offset address 000000 A 1 H in the code segment, its size is 2 bytes, and the label NEXT is at offset 00000020 H . Then, the address stored in the assembled instruction for the label NEXT, is 7DH.
(2) (True, False) After executing the instruction SAL AX, 2, the content of register AX is equal to $2 * \mathrm{AX}$, for both signed and unsigned content.
(3) (True, False) Assuming that EBX=FFFFFFFE and ESI=00000010, the address of the source operand in this instruction MOV AL, [EBX+ESI*2-5] is 00000019 and its addressing mode is Indexed.
(4) (True, False) Given that EAX=FFFF5783, executing the instruction CWD will make the content of EAX=00005783.
(5) (True, False) The conditional jump instructions JB and JC are equivalent.
(6) (True, False) The instruction IN CL, DX inputs the byte whose port address is in DX to register CL.
(7) (True, False) The code given below implements the conditional statement if ($(\mathrm{CX}<1)$ AND ($\mathrm{AX}>100)$) Then $\mathrm{CX}=0$

CMP CX, 1
JL Zero_index
CMP AX, 100
JLE end_if
Zero_index:
XOR CX, CX
End_if:
(8) (True, False) Assuming that $\mathrm{AX}=0 \mathrm{FFFH}$ and $\mathrm{BX}=100 \mathrm{~F}$, executing the instruction SHLD AX, BX, 4 will set $\mathrm{AX}=\mathrm{FFF} 1$ and $\mathrm{BX}=00 \mathrm{~F} 0$.
(9) (True, False) The interrupt flag (IF) is used to mask all kinds of interrupts.
(10) (True, False) In real address mode, the address of the interrupt service routine for INT 21H is stored in the interrupt vector table (IVT) at entry 84 H .
(11) (True, False) Assuming that AL contains an Alphabatic character, the instruction AND AL, 0DFH will guarantee that the character in AL is an upper case character. Note that the ASCII code of character 'A' is 41 H while that of character ' a ' is $61 H$.
(12) (True, False) Assuming that $\mathrm{AL}=91 \mathrm{H}$, executing the instruction SAR AL, 33 will make $\mathrm{AL}=48 \mathrm{H}$.
(13) (True, False) Assuming that $\mathrm{AX}=1234 \mathrm{H}$ and $\mathrm{DX}=0001 \mathrm{H}$, executing the sequence of instructions: \{PUSH DX; PUSH AX; POP EAX\} will result in $E A X=00011234 \mathrm{H}$.
(14) (True, False) Assuming that $\mathrm{AX}=00 \mathrm{~F} 2 \mathrm{H}$ and $\mathrm{BX}=0008 \mathrm{H}$, executing the instruction DIV BL will result in $\mathrm{AX}=1 \mathrm{E} 02 \mathrm{H}$.
(15) (True, False) Executing the instruction IRET pops one double word from the stack and stores it into EIP.
(Q2) Suppose that you have the following initial content of registers and memory after fetching each of the instructions shown below:

EAX $=00001 \mathrm{~F} 20 \mathrm{H}$ EBX=FFFFFC55H ESP=00001000H EIP=000030B0H

Determine the content of ESP, modified registers, modified flags, and modified memory locations after the execution of each of the following instructions starting from the initial content of the registers and memory for the execution of each instruction.
(i) POP EAX.
(ii) PUSH BX.
(iii) Call Sub, where Sub is at an offset address 00001000H.
(iv) RET 2.

Memory Location	Content
00000 FFA	FF
00000 FFB	10
00000 FFC	20
00000 FFD	30
00000 FFE	40
00000 FFF	50
00001000	60
00001001	70
00001002	80
00001003	90
00001004	A0
00001005	B
00001006	C0

(Q3) Answer the following questions. Show how you obtained your answer:

(i) Given that TABLE1 and TABLE2 are defined as:

TABLE1 BYTE ‘I like COE 205’
TABLE2 BYTE 'I like COE 308’
Determine the content of $\mathbf{A X}$ after executing the following code:

	MOV ECX, lengthof TABLE1
	MOV EBX, -1
	XOR AX, AX
AGAIN:	JECXZ DONE
	INC EBX
	MOV DL, TABLE1[EBX]
	CMP DL, TABLE2[EBX]
	LOOPE AGAIN
	JE DONE
	INC AX
DONE:	JMP AGAIN

DONE:
(ii) Given that ARRAY is defined as: ARRAY BYTE 'ABCDEF'

Determine the content of ARRAY after executing the following code:
PUSH DS
POP ES
STD
LEA ESI, ARRAY[4]
LEA EDI, ARRAY[5]
MOV BH, [EDI]
MOV ECX, 5
REP MOVSB
MOV [EDI], BH
(iii) Given that TABLE is defined as shown below:

TABLE BYTE 16 DUP(?)
Determine the content of TABLE after executing the following code:

MOV AX, 0E765H
MOV ECX, 16
LEA EBX, TABLE
AGAIN: XOR DL, DL
ROL AX, 1
ADC DL, '0'
MOV [EBX], DL
INC EBX
LOOP AGAIN

(iv) Determine the content of register $\mathbf{E A X}$ after exeucting the following code:

MOV EAX, 739
MOV EBX, 10
Next:
XOR ECX, ECX
Again:
XOR EDX, EDX DIV EBX
ADD ECX, EDX
TEST EAX, EAX
JNZ Again
MOV EAX, ECX
CMP EAX, 9
JA Next
(v) Determine the content of register EAX after executing the fllowing code:
.686
.MODEL FLAT, STDCALL
.STACK
INCLUDE Irvine32.inc
.DATA
TABLE DWORD -10, 20, 30, -50, 66, 12, 330, 1
.CODE
main PROC
PUSH offset TABLE ; pushed as 32-bit
PUSH lengthof TABLE ; pushed as 32-bit
CALL MYPROC
exit
main ENDP
MYPROC:
MOV EBP, ESP
PUSH EBX
PUSH ECX
MOV ECX, [EBP+4]
MOV EBX, [EBP+8]
MOV EAX, [EBX]
DEC ECX
ADD EBX, 4
NEXT:
CMP EAX, [EBX]
JL SKIP
MOV EAX, [EBX]
SKIP:
ADD EBX, 4
LOOP NEXT
POP ECX
POP EBX
RET 8
END main
(i) Write a procedure DISPAVG that receives as arguments the address of an array of unsigned integers (i.e. DWORD), Array, and the number of elements in the array, Size. The procedure will then compute the average of the numbers in the array and display it within a single decimal fraction digit. The procedure should preserve the content of all registers used.
(ii) Use the procedure DISPAVG to display the average of the given array

Array DWORD 15, 20, 30, 40
Note that your procedure should display the following in a new line:
Average $=26.2$

Note that the procedure WriteDec can be used for displaying the content of EAX in unsigned decimal format to standard output. The procedure WriteString writes a null-terminated string whose address is stored in EDX to standard output. The procedure WriteChar writes the character in register AL to standard output. The procedure Crlf writes end of line sequence (CR, LF) to standard output.
(Q5)
(i) Write a procedure BinarySearch to search an array which has been previously sorted in an ascending order. Each element in the array is a 32-bit signed integer. Three parameters should be passed on the stack: the address of the array to be searched, the size (number of elements) of the array, and the number to be searched. If the numer is found then BinarySearch returns in the EAX register the position of the number in the array. Otherwise, -1 is returned in EAX. All registers except EAX must be preserved by the procedure.

The pseudocode for the BinarySearch procedure is given below:
BinarySearch (array, size, number) \{
lower $=0$;
upper = size-1;
while (lower <= upper) \{
middle $=($ lower + upper $) / 2$;
if (number $==$ array[middle])
return middle;
else if (number < array[middle])
upper = middle-1;
else
lower $=$ middle +1 ;
\}
return -1;
\}
(ii) Write a complete program to use the procedure BinarySearch to search for the number $\mathbf{3}$ in the sorted array given below:

Array DWORD 1, 3, 4, 5, 9, 11, 20, 29
Note that the size of the array in this case is 8 and the BinarySerach procedure should return the position of number 3 as 1 .

