
 Page 1 of 9

 April 15, 2009

COMPUTER ENGINEERING DEPARTMENT

COE 205

COMPUTER ORGANIZATION & ASSEMBLY PROGRAMMING

Major Exam I

Second Semester (082)

Time: 7:00-9:00 PM

Student Name : ___KEY__

Student ID. : __

Question Max Points Score
Q1 60
Q2 10
Q3 10
Q4 20

Total 100

Dr. Aiman El-Maleh

 Page 2 of 9

 [60 Points]

(Q1) Fill the blank in each of the following:

(1) There is one-to-one correspondence between machine language and assembly
language.

(2) Compilers translate high-level programs to machine code.

(3) One of the main advantages of programming in high level languages is that
programs are portable.

(4) Programs written in assembly language have the advantage of being both space
and time efficient.

(5) The instruction set architecture of a processor provides a hardware/software
interface.

(6) The size of the address bus of the 8086 processor is 20 bits while it is 36 bits for
the Pentium IV processor.

(7) With the Pentium processor having a 32 bit address bus and a 64 bit data bus, the
physical address space is 232=4 Gbytes and the maximum number of bytes that
can be transferred in a single read/write cycle is 8 bytes.

(8) Dynamic RAM is slower than static RAM but is denser and cheaper.

(9) Cache memory can help bridge the widening speed gap between CPU and main
memory.

(10) Given a magnetic disk with the following properties: Rotation speed = 5400
RPM (rotations per minute), Average seek = 6 ms, Sector = 512 bytes, Track =
256 sectors. The average time to access a block of 64 consecutive sectors is 14.34
ms.

Average access time= Seek Time + Rotation Latency + Transfer Time
Rotations per second=5400/60 =90 RPS
Rotation time in milliseconds=1000/90=11.11 ms
Time to transfer 64 sectors=(64/256)* 11.11=2.78 ms
Average access time=6 + 5.56 + 2.78 =14.34 ms.

 Page 3 of 9

(11) The integer number -4992 is represented in hexadecimal using 16-bit 2’s
complement representation as EC80.

(12) Assume that AX=8411h and BX=F857. Executing the instruction ADD AX,
BX produces the following results: AX=7C68, overflow flag=1, sign flag=0, zero
flag=0, carry flag=1, auxiliary flag=0 and parity flag=0.

(13) Assume that AX=8411h and BX=F857. Executing the instruction SUB AX,
BX produces the following results: AX=8BBA, overflow flag=0, sign flag=1, zero
flag=0, carry flag=1, auxiliary flag=1 and parity flag=0.

(14) As part of the instruction set architecture of the Pentium-IV processor, it has 8
general-purpose registers, 6 segment registers in addition to EIP and EFLAGS
registers.

(15) The EIP register holds the address of the next instruction to be fetched from
memory.

(16) Given that the instruction MOV ECX, 1000 (having the machine code B9
000003E8) is stored at address 00000005, then the address of the next instruction
to be fetched from memory is 00000005+5=0000000A.

(17) In real addressing mode, assume that the code segment occupies the address
range from 00000 to 010F5. The next available free segment is 0110.

(18) Assume that DS=10AF, CS=4FE5, ES=F030, SS=E123, IP=0059, BX=1055,
and SI=577F. Based on 16-bit real-mode addressing, the linear address of the next
instruction to be fetched from memory is 4FE50+0059=4FEA9.

 Page 4 of 9

(19) Assume that DS=10AF, CS=4FE5, ES=F030, SS=E123, IP=0059, BX=1055,
and SI=577F. Based on 16-bit real addressing mode, the linear address of the
source operand in the instruction MOV AX, [SI] is 10AF0+577F =1626F.

(20) In protected mode, segment unit translates logical address to linear address
while paging unit translates linear address to physical address.

(21) Assembler directives provide information to the assembler while translating a
program and are non-executable.

(22) The assembler allocates 31*4=124 bytes for the variable Array defined below:

Array DWORD 5, 5 dup(5, 5 dup(0))

(23) Assuming the following data segment, and assuming that variable X is given
the linear address 00404000h, then the linear address for variables Y and Z will be
00404005h and 00404008h.

.DATA
X BYTE 10, 11, 12, 13, 14
Y WORD 15
ALIGN 4
Z DWORD 16

(24) Assuming the following data segment, and assuming that variable X is given
the linear address 00404000h, then the content of register EAX after executing the
instruction MOV EAX, OFFSET Y-2 is 0040400Eh.

.DATA
X BYTE “COE205”, 10, 13
 WORD 1, 2, 3, 4
Y DWORD 16

 Page 5 of 9

(25) After executing the code given below, the content of registers EAX and EBX
will be 00000006 and 00000018.

.DATA
ARRAY DWORD -1, 50,
 0FEh, -200,
 1010b, 0ABCDh
.CODE
MOV EAX, LENGTHOF ARRAY
MOV EBX, SIZEOF ARRAY

(26) After executing the code given below, the content of register EAX will be
04030201.

.DATA
ARRAY BYTE 1, 2, 3, 4, 5, 6, 7, 8
.CODE
MOV EAX, DWORD PTR ARRAY

(27) Assuming variable ARRAY is defined as shown below:

ARRAY WORD 1, 2, 3, 4, 5, 6, 7, 8

The content of register AX after executing the instruction MOV AX,
ARRAY+3 will be 0300.

(28) The addressing mode of the source operand in the instruction MOV EAX,
offset ARRAY+4 is immediate addressing mode.

(29) The addressing mode of the source operand in the instruction MOV EAX,
ARRAY+20[EBX*2-4] is indexed addressing mode.

 Page 6 of 9

(30) Assume that AX=50A3h. Executing the instruction MOVSX EBX, AL
produces the result EBX=FFFFFFA3.

(31) After executing the code shown below, the content of register EAX will be
55d=00000037 and the content of register ECX will be 0.

MOV ECX, 10
MOV EAX, 0

NEXT:
 ADD EAX, ECX
 LOOP NEXT

(32) Considering the code below, the value stored in the address field for NEXT in
the LOOP instruction is Next-PC=0000000A-0000000F=FB.

Offset Machine Code Source Code

 00000000 B9 00000004 MOV ECX, 4
 00000005 B8 00000002 MOV EAX, 2
 0000000A NEXT:
 0000000A 03 C0 ADD EAX, EAX
 0000000C 40 INC EAX
 0000000D E2 ?? LOOP NEXT

(33) Considering the code below, the content of register AX after executing the
code will be 20d=0014.

.DATA
 ARRAY WORD 1, 2, 3, 4, 5
 WORD 6, 7,8 , 9, 10
 WORD 11, 12, 13, 14, 15
 WORD 16, 17, 18, 19, 20

RSIZE EQU SIZEOF ARRAY
.CODE
 MOV ESI, 3*RSIZE
 MOV EDI, 4

MOV AX, ARRAY[ESI+EDI*TYPE ARRAY]

 Page 7 of 9

 [10 Points]

(Q2) Consider a program that has the following data segment assuming a flat memory model:
I EQU 1
J EQU AX
K BYTE 10
L WORD I+10

 Indicate whether the following are valid IA-32 instructions or not. If invalid, give the
reason:

1. MOV AX, L-1

Valid.

2. MOV AX, offset K+1

Invalid. Size mismatch as AX is a word while offset K+1 is a 32-bit address.

3. MOV DS, J

Valid.

4. MOV ES, K

Invalid. Size mismatch as ES is a word while K is a Byte.

5. MOV [2*EAX+EAX], 20

It is supposed to be Invalid as there is ambiguity since constants do not have size. However,
with MASM615, for the MOV instruction if size is not specified it will assume it a double
word!!

6. SUB [ESI*4], AX

Valid.

7. MOV EAX, OFFSET L[EBX]

Invalid. Offset operator can only be used with direct addressing mode.

8. MOV EAX, DWORD PTR BX

Invalid. PTR operator can only be used with memory operands.

9. MOVSX EAX, AL

Valid
10. MOV [EAX+ESI], L

Invalid. Both source and destination are memory operands.

 Page 8 of 9

[10 Points]

(Q3) Suppose that the following directives are declared in the data segment with a starting
linear address of 00404000. Show the linear addresses of allocated memory and their
corresponding content in hexadecimal. Note that the ASCII code for character ‘a’ is 61h and
that of character ‘A’ is 41h. The ASCII code of character ‘0’ is 30h.

I BYTE -20, ‘20’
 WORD 20

J DWORD 0FEh
K EQU 67H
L BYTE K-5

 BYTE 2, 2 dup(2,’C’)

Variable Linear Address (Hex.) Content (Hex.)
I 00404000 EC
 00404001 32
 00404002 30
 00404003 14
 00404004 00
J 00404005 FE
 00404006 00
 00404007 00
 00404008 00

L 00404009 62
 0040400A 02
 0040400B 02
 0040400C 43
 0040400D 02
 0040400E 43

 Page 9 of 9

[20 Points]

(Q4) Assume that you have a two-dimensional array of integers, declared as Array, with each
integer defined as a DWORD. Write an assembly program to swap the content of any two
columns assuming that the two column numbers to be swapped are stored in registers AL and
AH. Assume that the number of rows and number of columns in the array are defined in the
constants NRow and NCol, respectively. Your program should work for any array size.

For example, assume the following array definition:

NRow EQU 4
NCol EQU 5
Array DWORD 1, 2, 3, 4, 5
 DWORD 6, 7, 8, 9, 10
 DWORD 11, 12, 13, 14, 15
 DWORD 16, 17, 18, 19, 20

After executing the program assuming AH=1 and AL=2, the content of Array will be:
Array DWORD 1, 3, 2, 4, 5
 DWORD 6, 8, 7, 9, 10
 DWORD 11, 13, 12, 14, 15

 DWORD 16, 18, 17, 19, 20

 MOV AH, 1
 MOV AL, 2
 MOV ECX, NRow
 MOVZX ESI, AL ; index of first column
 MOVZX EDI, AH ; index of second column
 XOR EDX, EDX

 Next:
 MOV EBX, Array[EDX+ESI*TYPE ARRAY]
 XCHG EBX, Array[EDX+EDI*TYPE ARRAY]
 MOV Array[EDX+ESI*TYPE ARRAY], EBX
 ADD EDX, Sizeof Array
 Loop Next

