COMPUTER ENGINEERING DEPARTMENT

COE 205

COMPUTER ORGANIZATION \& ASSEMBLY PROGRAMMING

Major Exam I

Second Semester (092)
Time: 8:00-10:00 PM

Student Name : \qquad

Student ID. \qquad

Question	Max Points	Score
Q1	$\mathbf{7 6}$	
Q2	$\mathbf{1 2}$	
Q3	$\mathbf{1 2}$	
Total	$\mathbf{1 0 0}$	

(Q1) Fill the blank in each of the following:
(1) The advantages and disadvantages of programming in assembly language are
\qquad
\qquad -
(2) The advantages and disadvantages of DRAM are
\qquad
\qquad .
(3) The instruction set architecture of a processor is composed of
\qquad
\qquad .
(4) In protected mode, the logical address consists of
\qquad
\qquad .
(5) In protected mode, the linear address is computed based on
\qquad .
(6) Given that variables I and J are Dword variables, their content can be swapped using the following instructions:
\qquad
\qquad
\qquad
(7) Given that variable I is defined as Qword, the content of I is incremented using the following code:
\qquad
\qquad
\qquad
(8) Given a magnetic disk with the following properties: Rotation Speed $=5000$ RPM (rotations per minute), Average Seek $=4 \mathrm{~ms}$, Sector $=512$ bytes, Track $=250$ sectors. The average time to access a block of 50 consecutive sectors is
\qquad
\qquad
\qquad .
(9) The integer number -2000 is represented in hexadecimal using 16-bit 2's complement representation as \qquad .
(10) Assuming 16-bit 2's complement representation, the hexadecimal number EC10 represents the decimal number \qquad .
(11) Assuming 4-bit 2's complement representation, the largest number that can be stored is \qquad in decimal and \qquad in binary and the smallest number that can be stored is \qquad in decimal and \qquad in binary.
(12) Given that the number 88 h is represented using 8 -bit 2 's complement representation, the equivalent number represented using 16-bit 2's complement representation is \qquad .
(13) Given that register $\mathrm{AL}=\mathrm{C} 4$ stores an ASCII character, then the stored character is \qquad and the used parity is \qquad . Note that ' A ' $=41 \mathrm{~h}$ and ' a ' $=61 \mathrm{~h}$.
(14) The \qquad register holds the address of the next instruction to be fetched from memory.
(15) Given that the instruction ADD AX, I (having the machine code 03060000) is stored at address 0000002 C , then the address of the next instruction to be fetched from memory is \qquad .
(16) Given a processor with an 8 -stage pipeline and clock frequency of 2 GHZ , the time that will be required to execute a program of 4 billion instructions assuming that there will be no pipeline stalls is nearly seconds.
(17) Assume that the range of addresses from 00000 to 00 A 1 A is used by another program. Given that a program has a code segment of 8 Kbyte and a data segment of 3 Kbyte, the code segment number allocated is \qquad and the data segment number allocated is \qquad .
(18) Assume that $\mathrm{DS}=00 \mathrm{EF}, \mathrm{CS}=013 \mathrm{~A}, \mathrm{ES}=0112, \mathrm{SS}=0 \mathrm{FEC}, \mathrm{IP}=00 \mathrm{FF}, \mathrm{BX}=309 \mathrm{~A}$, and $\mathrm{SP}=01 \mathrm{FC}$. Based on 16 -bit real-mode addressing, the linear address of the next instruction to be fetched from memory is
\qquad
(19) Assume that $\mathrm{DS}=00 \mathrm{EF}, \mathrm{CS}=013 \mathrm{~A}, \mathrm{ES}=0112$, $\mathrm{SS}=0 \mathrm{FEC}, \mathrm{IP}=00 \mathrm{FF}, \mathrm{BX}=309 \mathrm{~A}$, and $\mathrm{SP}=01 \mathrm{FC}$. Based on 16 -bit real addressing mode, the linear address of the source operand in the instruction MOV AX, [BX+5] is
(20) The addressing mode of the source operand in the instruction MOV EAX, [MSG+1] is \qquad .
(21) Assume that $\mathrm{AX}=00 \mathrm{FFh}$. Executing the instruction INC AL produces the result $\mathrm{AX}=$ \qquad .
(22) The addressing mode of the source operand in the instruction MOV SI, [EBX] is \qquad .
(23) The assembler allocates \qquad bytes for the variable Array defined below:
Array Dword $5 \operatorname{dup}(30,30 \operatorname{dup}(0))$
(24) The content of register EAX after executing the following instructions is \qquad .

```
I=5
J EQU 10
MOV EAX, I-J
I=I-3
ADD EAX, I+J
```

(25) Assuming the following data segment and assuming that variable X is given the linear address 00404000 h , then the linear address for variables Y and Z will be
\qquad and \qquad .

.DATA

X BYTE 1, 2, 3, 4, 5
ALIGN 4
Y DWORD 4, 5
ALIGN 2
Z WORD 7, 8, 9
(26) Assuming the following data segment and assuming that variable X is given the linear address 00404000 h , then the content of register EAX after executing the instruction MOV EAX, Y-5 is \qquad -.

```
.DATA
X BYTE "EXAM I",0
    WORD 10,20
Y DWORD 30,40
```

(27) Assuming the following data segment and assuming that variable X is given the linear address 00404000 h , after executing the code given below, the content of register EAX= \qquad and $E B X=$

```
.DATA
X WORD 10, 20,30
Y DWORD 30, 40, 50
.CODE
MOV EAX, TYPE Y
MOV EBX, OFFSET Y-2
```

(28) After executing the code given below, the content of registers EAX and EBX will be \qquad and \qquad .
.DATA
ARRAY DWORD $10,20,30$,
40, 50, 60
.CODE
MOV EAX, LENGTHOF ARRAY
MOV EBX, SIZEOF ARRAY
(29) After executing the code given below, the content of register EAX will be
\qquad _.
.DATA
ARRAY WORD 10, 20, 30, 40, 50, 60
.CODE
MOV EAX, DWORD PTR ARRAY+3
(30) Assuming that variable ARRAY is defined as shown below:

ARRAY DWORD 1, 2, 3, 4, 5, 6
The content of register AX after executing the instruction MOV EAX, ARRAY+2 will be \qquad .
(31) Assume that $\mathrm{AL}=93 \mathrm{~h}$. Executing the instruction MOVSX EBX, AL produces the result EBX= \qquad .
(32) Assume that $\mathrm{AX}=\mathrm{A} 100 \mathrm{~h}$. Executing the instruction $N E G A X$ produces the following results: $\mathrm{AX}=$ \qquad overflow flag= \qquad , sign flag= \qquad zero flag= \qquad carry flag= \qquad , auxiliary flag= \qquad and parity flag= \qquad _.
(33) Assume that $\mathrm{AX}=\mathrm{ABCDh}$ and $\mathrm{BX}=8876 \mathrm{~h}$. Executing the instruction $A D D A X$, $B X$ produces the following results: $\mathrm{AX}=\ldots$, overflow flag $=$ \qquad sign flag= \qquad , zero flag= \qquad , carry flag= \qquad , auxiliary flag= \qquad and parity flag= \qquad _.
(34) Assume that $\mathrm{AX}=98 \mathrm{~A} 0 \mathrm{~h}$ and $\mathrm{BX}=$ FFDAh. Executing the instruction $S U B$ $A X, B X$ produces the following results: $\mathrm{AX}=$ \qquad , overflow flag= \qquad sign flag= \qquad , zero flag= \qquad , carry flag= \qquad , auxiliary flag= \qquad and parity flag= \qquad .
(35) The content of register EAX after executing the instructions below will be
\qquad _.
.DATA
ARRAY DWORD 1, 2, 3, 4
DWORD 5, 6, 7, 8
DWORD 9, 10, 11, 12
RS EQU SIZEOF ARRAY
.CODE
MOV ESI, 2*RS
MOV EDI, 3
MOV EAX, ARRAY[ESI+EDI*TYPE ARRAY]
(Q2) Consider a program that has the following data segment assuming a flat memory model:

X	EQU	16
Y	$B Y T E$	17
Z	WORD	18
W	DWORD	19

Indicate whether the following are valid IA-32 instructions or not. If invalid, give the reason:

1. MOV EAX, W-1
2. MOV Z, Word PTR Y
3. MOV DS, X
4. MOV Z, X
5. MOV AX, OFFSET Z
6. MOVSX EAX, X
7. MOV W, Dword PTR AX
8. INC [EBX]
(Q3) Suppose that the following directives are declared in the data segment with a starting linear address of 00404000. Show the linear addresses of allocated memory and their corresponding content in hexadecimal. Note that the ASCII code for character ' a ' is 61 h and that of character ' A ' is 41 h . The ASCII code of character ' 0 ' is 30 h .

I	BYTE	$10, " 10 ", 0$
	WORD	$10,-10$
J	DWORD	$112,-112$
K	EQU	100
L	BYTE	$\mathrm{K}+20$
	BYTE	2,2 dup(1,-1)

Variable	Linear Address (Hex.)	Content (Hex.)
I	00404000	

