KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 205 Computer Organization & Assembly Language Term 062 Lecture Breakdown

Lec #	Date	Topics	Ref.
1	S 17/2	Syllabus. Introduction, Assembly and machine language, Compiler and assembler.	Chapter1 & Int. Computer Org. & Assembly Lang. Prog. (Online)
2	M 19/2	Instruction and machine language, Instruction fields: opcode, operands, Assembly vs. Machine code, Translating languages, Advantages of High-Level languages, Why learn Assembly language, Assembly vs. High-level languages.	Chapter1 & Int. Computer Org. & Assembly Lang. Prog. (Online)
3	W 21/2	Assembly language programming tools: Assembler, Linker, Debugger, Editor. Programmer's view of a computer system. Instruction set architecture, Main components of a computer system.	Chapter1 & Int. Computer Org. & Assembly Lang. Prog. (Online)
4	S 24/2	Data Representation: Binary Numbers, Hexadecimal Numbers, Base Conversions, Integer Storage Sizes, Binary and, Hexadecimal Addition, Signed Integers.	Chapter1 & Data Representation (Online)
5	M 26/2	Two's complement representation, Sign extension, 16's complement, binary and hexadecimal subtraction, Ranges of signed integers, carry and overflow.	Chapter1 & Data Representation (Online)
6	W 28/2	Character representation: ASCII code, parity bit. IA-32 Architecture: Basic computer organization, processor, clock, memory, ROM and RAM.	Chapter1 & Chapter 2 & Int. Computer Org. and Assembly Lang. Prog. (Online)
7	S 3/3	Memory Hierarchy: Registers, RAM, Cache, Hard disk. (Quiz#1)	Chapter 2 & Int. Computer Org. and Assembly Lang. Prog. (Online)
8	M 5/3	Magnetic Disk Storage access time, Intel Microprocessors: History of processors. CISC vs. RISC processors.	Chapter 2 & Int. Computer Org. and Assembly Lang. Prog. (Online)
9	W 7/3	IA-32 Registers, Status Flags, Fetch- Execute cycle.	Chapter 2 & Int. Computer Org. and

			Assembly Lang. Prog. (Online)
10	S 10/3	Pipelined Execution, Superscalar Architecture, IA-32 Memory Management, Modes of Operation, Real Address Mode: Logical to Linear Address Translation.	Chapter 2 & Int. Computer Org. and Assembly Lang. Prog. (Online)
11	M 12/3	Flat Memory Model, Protected Mode Architecture and address translation, Segment Descriptor Tables, Paging. Basic Elements of Assembly Language, Flat Memory Program Template, Assembling, Linking, and Debugging Programs.	Chapter 2 & 3 Assembly Language Syntax and Program Structure (Online)
12	W 14/3	Variable Declaration: DB, BYTE, SBYTE. Defining strings. DUP Operator.	Chapter 3 & Variable, Constant, and Array Declaration (Online)
13	S 17/3	Variable Declaration: DW, WORD, SWORD, DD, DWORD, SDWORD, Byte Ordering, Defining Symbolic Constants: =. (Quiz#2)	Chapter 3 & Variable, Constant, and Array Declaration (Online)
14	M 19/3	Defining Symbolic Constants: EQU & TEXTEQU Directives. Offset Operator, Align Directive, Type, Lengthof, Sizeof operators.	Chapter 3 & Variable, Constant, and Array Declaration (Online)
15	W 21/3	PTR operator, Label directive. Operand Types.	Chapter 3 & Variable, Constant, and Array Declaration (Online)
16	S 24/3	Basic Pentium Instructions : MOV, XCHG. MOVZX, MOVSX, ADD, SUB.	Chapter 4 (Assembly) Basic Pentium Instructions (Online)
17	M 26/3	ADD, SUB, INC, DEC, NEG, ADC, SBB.	Chapter 4 (Assembly) Unit4: Basic Pentium Instructions (Online)
18	W 28/3	JMP & Loop Instruction. Addressing Modes: Immediate, Register, Direct, Register Indirect.	Chapter 4 (Assembly) &Addressing Modes (Online)
	Th 29/3	MAJOR EXAM I	
19	S 31/3	Indexed Addressing Mode. (Solution of EXAM I).	Chapter 4 (Assembly) &Addressing Modes (Online)

20	M 2/4	Addressing modes: Based, Indexed, Based-	Chapter 4
		Indexed. 8086 Addressing modes. Two-	(Assembly)
		dimensional array processing.	&Addressing Modes
			(Online)
21	W 4/4	LEA instruction. Default segments and	Chapter 4
		Segment Override. PC relative addressing.	(Assembly)
			(Online)
22	S 7/A	Link Library Overview Calling a Library	(Onnic)
	57/4	Procedure. Linking to a Library.	(Assembly)
		Input/Output procedures using book's	(Asseniory)
		library (Irvine32.lib).	
23	M 9/4	Input/Output libraries, Stack instructions:	Chapter5
		Push and Pop.	(Assembly) &
			Stack & Procedures
			(Online)
24	W 11/4	Uses of the Runtime Stack: Temporary	Chapter5
		Storage of Registers, Nested Loop, Saving	(Assembly) &
		Return Address, Local Variable	Stack & Procedures
		Declaration. (Quiz#3)	(Online)
25	M 16/4	Stack Instructions: pushad, pusha, popad,	Chapter5
		popa, pushfd, pushf, popfd, popf. Defining	(Assembly) &
		and Using Procedures, Call & RET	Stack & Procedures
		Instructions, Parameter Passing, Preserving	(Online)
		Registers, USES Operator, Program Design	
26	W 19/A	Program Design using Procedures	Chapter 5
20	W 10/4	Parameter Passing Through Stack, Call &	
		Return Instructions, Freeing Passed	(Assembly) & Stock & Procedures
		Parameters From Stack, Local Variables.	(Online)
27	\$ 21/4	Logical Instructions: NOT. AND. OR.	Chapter6
21	5 21/4	XOR, Test, NOT. Applications of logic	(Assembly)
		instructions. Flow Control Instructions:	& Flow Control
		CMP Instruction. Conditional Jump	Instructions
		instructions: Unsigned.	(Online)
28	M 23/4	Conditional Jump instructions: Signed and	Chapter 6
		Unsigned. Single-flag jump instructions.	(Assembly)
			& Flow Control
			Instructions
			(Online)
29	W 25/4	Conditional Loop Instructions:	Chapter6
		Loope/Loopz, Loopne/Loopnz. (Quiz#4)	(Assembly)
			& Flow Control
			(Online)
20	C 20/4	Conditional Loop Instructions:	Charter
30	5 28/4	Loope/Loopz, Loopne/Loopnz. High-Level	Chaptero

		Decision Control Structures: IF-Then-Else,	(Assembly)
		For Loop, Case. While Loop.	& Flow Control
			Instructions
			(Online)
31	M 30/4	Indirect Jump and Table-Driven Selection,	Chapter6
		case statements, bubble sort.	(Assembly)
			& Flow Control
			Instructions
			(Online)
32	W 2/5	Shift Instructions: SHL, SAL, SHR, SAR.	Chapter7
		Applications of using shift instructions in	(Assembly)
		performing multiplication. Applications of	& Bit Manipulation
		using shift instructions in performing	Instructions
		division. SHLD, SHRD. Rotate	(Online)
		Instructions: ROL, ROR, RCL, RCR.	
33	S 5/5	Shift & Rotate Applications.	Chapter7
		Multiplication Instructions: MUL, IMUL.	(Assembly)
		Pentium IMUL instructions.	& Advanced
			Arithmetic
			(Online)
	S 5/5	Division Instructions: DIV, IDIV. Sign	Chapter7
	Makeup	Extension Instructions: CBW, CWD, CDQ.	(Assembly)
		Translating Arithmetic Expressions,	& Advanced
		Decimal string to number conversions.	Arithmetic
			(Online)
34	M7/5	Number to decimal string conversion.	String Handling
_		String Instructions: MOVS, MOVSB,	Instructions (Online)
		MOVSW, MOVSD. REP Prefix.	
		CMPS, CMPSB, CMPSW, CMPSD. SCAS,	
		SCASB, SCASW, SCASD, LODS,	
		LODSB, LODSW, LODSD, STOS,	
		STOSB, STOSW, STOSD, REPE, REPNE.	
		Applications of string instructions.	
35	W 9/5	Input/Output: IN and OUT instructions,	Input/Output
		Direct and Indirect I/O. Introduction to	Instructions &
		and procedures. Types of Interrupts	Interrupts (Online)
		land procedures. Types of interrupts:	
		and non-maskable Intermints Intermint Elec	
		Interrupt Processing IVT Tran Flag	
36	\$ 12/5	Review of Interrupt processing. (Ouiz#5)	Input/Output
50	512/5		Instructions &
			Interrupts (Online)
37	M 14/5	CPU Design: Register Transfer. Data-Path	Section 2.6 &
		Design. Connecting Registers using Muxs.	Chapter 4
			(Organization)
			& CPU Design
			(Online)

	M 14/5	MAJOR EXAM II	
38	W 16/5	Connecting Registers using a tri-state bus.	Section 2.6 &
		Examples of register transfer: MOV, ADD,	Chapter 4
		SUB, INC.	(Organization)
			& CPU Design
			(Online)
39	S 19/5	Examples of register transfer: INC, DEC,	Section 2.6 &
		XCHG Register Transfer Timing:	Chapter 4
		Estimating Minimum Clock Period. Single-	(Organization)
		Bus CPU Data path design: Fetch Control	& CPU Design
		Sequence.	(Online)
40	M21/5	Single-Bus CPU: Synchronous vs.	Section 2.6 &
		Asynchronous Memory Transfer, Execution	Chapter 4
		control sequence for ADD with register	(Organization)
		indirect addressing mode, unconditional &	& CPU Design
		Conditional JMP, Add with immediate.	(Online)
41	W 23/5	Single-Bus CPU: Execution control	Section 2.6 &
		sequence for Conditional JMP, INC, Loop,	Chapter 4
		CMP instructions. Performance	(Organization)
		Considerations. Two-Bus CPU : Fetch	& CPU Design
		Control Sequence.	(Online)
42	S 26/5	Two-Bus CPU: Execution Control	Section 2.6 &
		Sequence for ADD with register indirect	Chapter 4
		addressing mode, unconditional and	(Organization)
		conditional Jump. Three-Bus CPU: Fetch	& CPU Design
		Control Sequence, Execution Control	(Online)
		Sequence for ADD, unconditional and	
		conditional Jump Instructions. Control	
		Unit Design: Hardwired Control Unit.	
43	M28/5	Hardwired Control Unit, General	Section 2.6 &
		Hardwired Control Unit Organization,	Chapter 4
		Generation of Control Signals. Deriving	(Organization)
		Rout & Rin Signals. CPU-Memory	& CPU Design
		Interface Circuit.	(Omme)
44	W 30/5	CPU-Memory Interface Circuit.	Section 2.6 &
		Control Word Control Store Miero	(Organization)
		Program Counter, Micro Instruction	(Organization)
		Program Counter, Micro Instruction	(Opling)
4.77	00/5	General Organization of Micro	Section 2.6 &
45	S2/6	programmed Control Unit Branching	Chapter A
		Address Sequencer Horizontal Field	(Organization)
		encoded and vertical control store	& CPU Design
		Comparison of Hardwired vs. Micro-	(Online)
		programmed control unit.	(Omme)