
Libraries and Procedures

COE 205
Computer Organization and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Libraries and Procedures COE 205 – KFUPM slide 2

Presentation Outline

Link Library Overview

The Book's Link Library

Runtime Stack and Stack Operations

Defining and Using Procedures

Program Design Using Procedures

Libraries and Procedures COE 205 – KFUPM slide 3

Link Library Overview
A link library is a file containing procedures that have
been assembled into machine code

Can be constructed from one or more object (.OBJ) files

Textbook provides link libraries to simplify Input/Output
Irvine32.lib is for programs written in 32-bit protected mode

Irvine16.lib is for programs written in 16-bit real-address mode

You can also construct your own link library
Start with one or more assembler source files (extension .ASM)

Assemble each source file into an object file (extension .OBJ)

Create an empty link library file (extension .LIB)

Add the OBJ files to the library file using the Microsoft LIB utility

Libraries and Procedures COE 205 – KFUPM slide 4

Procedure Prototypes & Include File
Before calling an external procedure in a library …

You should make the external procedure visible to your program

To make an external procedure visible, use a prototype

Examples of Procedure Prototypes
ClrScr PROTO ; Clear the screen
WriteChar PROTO ; Write a character
WriteInt PROTO ; Write a signed integer
ReadString PROTO ; Read a string

The procedure prototypes are placed in an include file
The Irvine32.inc include file (extension .INC) contains the
prototypes of the procedures that are defined in Irvine32.lib
The INCLUDE directive copies the content of the include file

Libraries and Procedures COE 205 – KFUPM slide 5

Calling a Library Procedure
To call a library procedure, use the CALL instruction

Some procedures require input arguments
We can pass arguments in registers

The following example displays "1A8C" on the console

INCLUDE Irvine32.inc
.code

mov eax, 1A8Ch ; eax = argument
call WriteHex ; Display eax in hex
call Crlf ; Display end of line

...
Crlf PROTO
WriteHex PROTO
...

Irvine32.inc

Libraries and Procedures COE 205 – KFUPM slide 6

Linking to a Library
Your program links to Irvine32.lib
The link32.exe executable file is the 32-bit linker

The linker program combines a program's object file with one or
more object files and link libraries

To link myprog.obj to Irvine32.lib & kernel32.lib type …
link32 myprog.obj Irvine32.lib kernel32.lib

Your program

kernel32.lib

kernel32.dll

Irvine32.lib
links to

executes

links to
can link to

If a procedure you are calling is
not in the link library, the linker
issues an error message

Kernel32.dll is called a dynamic
link library, part of MS-Windows.
It contains procedures that
perform character-base I/O

Libraries and Procedures COE 205 – KFUPM slide 7

Next . . .

Link Library Overview

The Book's Link Library

Runtime Stack and Stack Operations

Defining and Using Procedures

Program Design Using Procedures

Libraries and Procedures COE 205 – KFUPM slide 8

The Book's Link Library
The book's link library Irvine32.lib consists of …

Input procedures: ReadInt, ReadChar, ReadString, …

Output procedures: Clrscr, WriteInt, WriteHex, WriteString, …

Dumping registers and memory: DumpRegs and DumpMem

Random number generation: Randomize, Random32, …

Cursor control procedures: GetMaxXY and Gotoxy

Miscellaneous procedures: SetTextColor, Delay, …

Console Window
Text-only window created by MS-Windows (cmd.exe program)

The Irvine32.lib writes output to the console (standard output)

The Irvine32.lib reads input from the keyboard (standard input)

Libraries and Procedures COE 205 – KFUPM slide 9

Output Procedures

Writes EAX in binary format to standard output.WriteBin

Writes character in register AL to standard output.WriteChar

Writes a null-terminated string to standard output.
String address should be passed in register EDX.

WriteString

Writes EAX in hexadecimal format to standard output.WriteHex

Writes EAX in signed decimal format to standard output.WriteInt

Writes EAX in unsigned decimal format to standard output.WriteDec

Writes end of line sequence (CR,LF) to standard output.Crlf

Clears screen, locates cursor at upper left corner.Clrscr

DescriptionProcedure

Libraries and Procedures COE 205 – KFUPM slide 10

Example: Displaying a String

.data
str1 BYTE "Assembly language is easy!",0
.code

mov edx, OFFSET str1
call WriteString
call Crlf

Displaying a null-terminated string
Moving the cursor to the beginning of the next line

Adding the CR/LF control characters to the string definition

.data
str1 BYTE "Assembly language is easy!",13,10,0
.code

mov edx, OFFSET str1
call WriteString

CR LF

No need to call Crlf

Libraries and Procedures COE 205 – KFUPM slide 11

Example: Displaying an Integer
.code

mov eax, -1000
call WriteBin ; display binary
call Crlf
call WriteHex ; display hexadecimal
call Crlf
call WriteInt ; display signed decimal
call Crlf
call WriteDec ; display unsigned decimal
call Crlf

1111 1111 1111 1111 1111 1100 0001 1000
FFFFFC18
-1000
4294966296

Sample output

Libraries and Procedures COE 205 – KFUPM slide 12

Input Procedures

Reads a 32-bit unsigned integer and returns it in EAX.ReadDec

Reads a 32-bit signed integer and returns it in EAX.
Leading spaces are ignored. Optional + or – is allowed.
Error checking is performed (error message) for invalid input.

ReadInt

Reads a 32-bit hex integer and returns it in the EAX register.
Reading stops when the user presses the [Enter] key.
No error checking is performed.

ReadHex

Reads a string of characters from keyboard.
Additional null-character is inserted at the end of the string.
EDX = address of array where input characters are stored.
ECX = maximum characters to be read + 1 (for null byte)
Return EAX = count of non-null characters read.

ReadString

Reads a char from keyboard and returns it in the AL register.
The character is NOT echoed on the screen.

ReadChar

DescriptionProcedure

Libraries and Procedures COE 205 – KFUPM slide 13

Example: Reading a String

.data
inputstring BYTE 21 DUP(0) ; extra 1 for null byte
actualsize DWORD 0

.code
mov edx, OFFSET inputstring
mov ecx, SIZEOF inputstring
call ReadString
mov actualsize, eax

Before calling ReadString …
EDX should have the address of the string.
ECX specifies the maximum number of input chars + 1 (null byte).

Actual number of characters read is returned in EAX
A null byte is automatically appended at the end of the string

Libraries and Procedures COE 205 – KFUPM slide 14

Dumping Registers and Memory
DumpRegs

Writes EAX, EBX, ECX, and EDX on first line in hexadecimal

Writes ESI, EDI, EBP, and ESP on second line in hexadecimal

Writes EIP, EFLAGS, CF, SF, ZF, and OF on third line

DumpMem
Writes a range of memory to standard output in hexadecimal

ESI = starting address

ECX = number of elements to write

EBX = element size (1, 2, or 4)

Libraries and Procedures COE 205 – KFUPM slide 15

Example: Dumping a Word Array

.data
array WORD 2 DUP (0, 10, 1234, 3CFFh)

.code
mov esi, OFFSET array
mov ecx, LENGTHOF array
mov ebx, TYPE array
call DumpMem

Dump of offset 00405000

0000 000A 04D2 3CFF 0000 000A 04D2 3CFF

Console Output

Libraries and Procedures COE 205 – KFUPM slide 16

Random Number Generation
Randomize

Seeds the random number generator with the current time

The seed value is used by Random32 and RandomRange

Random32
Generates an unsigned pseudo-random 32-bit integer

Returns value in EAX = random (0 to FFFFFFFFh)

RandomRange
Generates an unsigned pseudo-random integer from 0 to n – 1

Call argument: EAX = n

Return value in EAX = random (0 to n – 1)

Libraries and Procedures COE 205 – KFUPM slide 17

Example on Random Numbers
Generate and display 5 random numbers from 0 to 999

mov ecx, 5 ; loop counter
L1: mov eax, 1000 ; range = 0 to 999

call RandomRange ; eax = random integer
call WriteDec ; display it
call Crlf ; one number per line
loop L1

194
702
167
257
607

Console Output

Libraries and Procedures COE 205 – KFUPM slide 18

Additional Library Procedures

Locates cursor at a specific row and column on the console.
DH = row number
DL = column number

Gotoxy

Sets the color for all subsequent text output.
Bits 0 – 3 of EAX = foreground color.
Bits 4 – 7 of EAX = background color.

SetTextColor

Displays "Press [Enter] to Continue …" and waits for user.WaitMsg

Return the number of columns and rows in console window buffer
Return value DH = current number of rows
Return value DL = current number of columns

GetMaxXY

Return in EAX the milliseconds elapsed since midnight.GetMseconds

Delay program for a given number of milliseconds.
EAX = number of milliseconds.

Delay

DescriptionProcedure

Libraries and Procedures COE 205 – KFUPM slide 19

Example on TextColor

.data
str1 BYTE "Color output is easy!",0

.code
mov eax, yellow + (blue * 16)
call SetTextColor
call Clrscr
mov edx, OFFSET str1
call WriteString
call Crlf

Display a null-terminated string with
yellow characters on a blue background

The colors defined in Irvine32.inc are:
black, white, brown, yellow, blue, green, cyan, red, magenta, gray, lightBlue,
lightGreen, lightCyan, lightRed, lightMagenta, and lightGray.

Libraries and Procedures COE 205 – KFUPM slide 20

.data
time BYTE "Execution time in milliseconds: ",0
start DWORD ? ; start execution time

.code
main PROC
call GetMseconds ; EAX = milliseconds since midnight
mov start, eax ; save starting execution time
call WaitMsg ; Press [Enter] to continue ...
mov eax, 2000 ; 2000 milliseconds
call delay ; pause for 2 seconds
lea edx, time
call WriteString
call GetMseconds
sub eax, start
call WriteDec
exit

main ENDP
END main

Measuring Program Execution Time

Libraries and Procedures COE 205 – KFUPM slide 21

Next . . .

Link Library Overview

The Book's Link Library

Runtime Stack and Stack Operations

Defining and Using Procedures

Program Design Using Procedures

Libraries and Procedures COE 205 – KFUPM slide 22

What is a Stack?
Stack is a Last-In-First-Out (LIFO) data structure

Analogous to a stack of plates in a cafeteria

Plate on Top of Stack is directly accessible

Two basic stack operations
Push: inserts a new element on top of the stack

Pop: deletes top element from the stack

View the stack as a linear array of elements
Insertion and deletion is restricted to one end of array

Stack has a maximum capacity
When stack is full, no element can be pushed

When stack is empty, no element can be popped

Libraries and Procedures COE 205 – KFUPM slide 23

Runtime Stack
Runtime stack: array of consecutive memory locations

Managed by the processor using two registers
Stack Segment register SS

Not modified in protected mode, SS points to segment descriptor

Stack Pointer register ESP
For 16-bit real-address mode programs, SP register is used

ESP register points to the top of stack
Always points to last data item placed on the stack

Only words and doublewords can be pushed and popped
But not single bytes

Stack grows downward toward lower memory addresses

Libraries and Procedures COE 205 – KFUPM slide 24

Runtime Stack Allocation
.STACK directive specifies a runtime stack

Operating system allocates memory for the stack

Runtime stack is initially empty

The stack size can change dynamically at runtime

Stack pointer ESP
ESP is initialized by the operating system

Typical initial value of ESP = 0012FFC4h

The stack grows downwards
The memory below ESP is free

ESP is decremented to allocate stack memory

ESP = 0012FFC4

?

?
?
?
?
?
?
?
?

...

low
address

high
address

Libraries and Procedures COE 205 – KFUPM slide 25

Stack Instructions
Two basic stack instructions:

push source

pop destination

Source can be a word (16 bits) or doubleword (32 bits)
General-purpose register
Segment register: CS, DS, SS, ES, FS, GS
Memory operand, memory-to-stack transfer is allowed
Immediate value

Destination can be also a word or doubleword
General-purpose register

Segment register, except that pop CS is NOT allowed

Memory, stack-to-memory transfer is allowed

Libraries and Procedures COE 205 – KFUPM slide 26

Push Instruction
Push source32 (r/m32 or imm32)

ESP is first decremented by 4
ESP = ESP – 4 (stack grows by 4 bytes)

32-bit source is then copied onto the stack at the new ESP
[ESP] = source32

Push source16 (r/m16)
ESP is first decremented by 2

ESP = ESP – 2 (stack grows by 2 bytes)
16-bit source is then copied on top of stack at the new ESP

[ESP] = source16

Operating system puts a limit on the stack capacity
Push can cause a Stack Overflow (stack cannot grow)

Libraries and Procedures COE 205 – KFUPM slide 27

Examples on the Push Instruction
Suppose we execute:

PUSH EAX ; EAX = 125C80FFh

PUSH EBX ; EBX = 2Eh

PUSH ECX ; ECX = 9B61Dh

ESP

0012FFC4

0012FFC0

0012FFBC

0012FFB8

0012FFB4

125C80FF

AFTER

0000002E

0009B61D

ESP0012FFC4

BEFORE

0012FFC0

0012FFBC

0012FFB8

0012FFB4

The stack grows
downwards

The area below
ESP is free

Libraries and Procedures COE 205 – KFUPM slide 28

Pop Instruction
Pop dest32 (r/m32)

32-bit doubleword at ESP is first copied into dest32

dest32 = [ESP]
ESP is then incremented by 4

ESP = ESP + 4 (stack shrinks by 4 bytes)

Pop dest16 (r/m16)

16-bit word at ESP is first copied into dest16

dest16 = [ESP]
ESP is then incremented by 2

ESP = ESP + 2 (stack shrinks by 2 bytes)

Popping from an empty stack causes a stack underflow

Libraries and Procedures COE 205 – KFUPM slide 29

Examples on the Pop Instruction
Suppose we execute:

POP SI

POP DI

0012FFC4

0012FFC0

0012FFBC

0012FFB8

0012FFB4

125C80FF

AFTER

0000002E

0009B61D

ESP

The stack shrinks
upwards

The area at & above
ESP is allocated

ESP

0012FFC4

0012FFC0

0012FFBC

0012FFB8

0012FFB4

125C80FF

BEFORE

0000002E

0009B61D

; SI = B61Dh

; DI = 0009h

Libraries and Procedures COE 205 – KFUPM slide 30

Uses of the Runtime Stack
Runtime Stack can be utilized for

Temporary storage of data and registers

Transfer of program control in procedures and interrupts

Parameter passing during a procedure call

Allocating local variables used inside procedures

Stack can be used as temporary storage of data
Example: exchanging two variables in a data segment
push var1 ; var1 is pushed
push var2 ; var2 is pushed
pop var1 ; var1 = var2 on stack
pop var2 ; var2 = var1 on stack

Libraries and Procedures COE 205 – KFUPM slide 31

Temporary Storage of Registers
Stack is often used to free a set of registers

push EBX ; save EBX
push ECX ; save ECX
. . .
; EBX and ECX can now be modified
. . .
pop ECX ; restore ECX first, then
pop EBX ; restore EBX

Example on moving DX:AX into EBX

push DX ; push most significant word first
push AX ; then push least significant word
pop EBX ; EBX = DX:AX

Libraries and Procedures COE 205 – KFUPM slide 32

Example: Nested Loop

mov ecx, 100 ; set outer loop count
L1: . . . ; begin the outer loop

push ecx ; save outer loop count

mov ecx, 20 ; set inner loop count
L2: . . . ; begin the inner loop

. . . ; inner loop
loop L2 ; repeat the inner loop

. . . ; outer loop
pop ecx ; restore outer loop count
loop L1 ; repeat the outer loop

When writing a nested loop, push the outer loop counter
ECX before entering the inner loop, and restore ECX after
exiting the inner loop and before repeating the outer loop

Libraries and Procedures COE 205 – KFUPM slide 33

Push/Pop All Registers
pushad

Pushes all the 32-bit general-purpose registers
EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI in this order
Initial ESP value (before pushad) is pushed
ESP = ESP – 32

pusha
Same as pushad but pushes all 16-bit registers AX through DI
ESP = ESP – 16

popad
Pops into registers EDI through EAX in reverse order of pushad
ESP is not read from stack. It is computed as: ESP = ESP + 32

popa
Same as popad but pops into 16-bit registers. ESP = ESP + 16

Libraries and Procedures COE 205 – KFUPM slide 34

Stack Instructions on Flags
Special Stack instructions for pushing and popping flags

pushfd

Push the 32-bit EFLAGS

popfd

Pop the 32-bit EFLAGS

No operands are required

Useful for saving and restoring the flags

For 16-bit programs use pushf and popf

Push and Pop the 16-bit FLAG register

Libraries and Procedures COE 205 – KFUPM slide 35

Next . . .

Link Library Overview

The Book's Link Library

Runtime Stack and Stack Operations

Defining and Using Procedures

Program Design Using Procedures

Libraries and Procedures COE 205 – KFUPM slide 36

Procedures
A procedure is a logically self-contained unit of code

Called sometimes a function, subprogram, or subroutine
Receives a list of parameters, also called arguments
Performs computation and returns results

Plays an important role in modular program development

Example of a procedure (called function) in C language
int sumof (int x,int y,int z) {

int temp;
temp = x + y + z;
return temp;

}

The above function sumof can be called as follows:
sum = sumof(num1,num2,num3);

Result type

Actual parameter list

Return function result

Formal parameter list

Libraries and Procedures COE 205 – KFUPM slide 37

Defining a Procedure in Assembly
Assembler provides two directives to define procedures

PROC to define name of procedure and mark its beginning

ENDP to mark end of procedure

A typical procedure definition is

procedure_name PROC
. . .

; procedure body
. . .

procedure_name ENDP

procedure_name should match in PROC and ENDP

Libraries and Procedures COE 205 – KFUPM slide 38

Documenting Procedures
Suggested Documentation for Each Procedure:

Does: Describe the task accomplished by the procedure

Receives: Describe the input parameters

Returns: Describe the values returned by the procedure

Requires: List of requirements called preconditions

Preconditions

Must be satisfied before the procedure is called

If a procedure is called without its preconditions satisfied, it will
probably not produce the expected output

Libraries and Procedures COE 205 – KFUPM slide 39

Example of a Procedure Definition
The sumof procedure receives three integer parameters

Assumed to be in EAX, EBX, and ECX

Computes and returns result in register EAX

;--
; Sumof: Calculates the sum of three integers
; Receives: EAX, EBX, ECX, the three integers
; Returns: EAX = sum
; Requires: nothing
;--
sumof PROC

add EAX, EBX ; EAX = EAX + second number
add EAX, ECX ; EAX = EAX + third number
ret ; return to caller

sumof ENDP

The ret instruction returns control to the caller

Libraries and Procedures COE 205 – KFUPM slide 40

The Call Instruction
To invoke a procedure, the call instruction is used
The call instruction has the following format

call procedure_name

Example on calling the procedure sumof
Caller passes actual parameters in EAX, EBX, and ECX
Before calling procedure sumof

mov EAX, num1 ; pass first parameter in EAX
mov EBX, num2 ; pass second parameter in EBX
mov ECX, num3 ; pass third parameter in ECX
call sumof ; result is in EAX
mov sum, EAX ; save result in variable sum

call sumof will call the procedure sumof

Libraries and Procedures COE 205 – KFUPM slide 41

How a Procedure Call / Return Works
How does a procedure know where to return?

There can be multiple calls to same procedure in a program
Procedure has to return differently for different calls

It knows by saving the return address (RA) on the stack
This is the address of next instruction after call

The call instruction does the following
Pushes the return address on the stack
Jumps into the first instruction inside procedure
ESP = ESP – 4; [ESP] = RA; EIP = procedure address

The ret (return) instruction does the following
Pops return address from stack
Jumps to return address: EIP = [ESP]; ESP = ESP + 4

Libraries and Procedures COE 205 – KFUPM slide 42

Free Area

Allocated

Before Call
ESP = 0012FFC4

Details of CALL and Return

ESP
ESP

Address Machine Code Assembly Language

.CODE
main PROC

00401020 A1 00405000 mov EAX, num1
00401025 8B 1D 00405004 mov EBX, num2
0040102B 8B 0D 00405008 mov ECX, num3
00401031 E8 0000004B call sumof
00401036 A3 0040500C mov sum, EAX
.

exit
main ENDP

sumof PROC
00401081 03 C3 add EAX, EBX
00401083 03 C1 add EAX, ECX
00401085 C3 ret

sumof ENDP

END main

RA=00401036

IP-relative call
EIP = 00401036

0000004B

EIP = 00401081

+

After Call
ESP = 0012FFC0
After Ret (Return)
ESP = 0012FFC4

R
un

tim
e

St
ac

k

Libraries and Procedures COE 205 – KFUPM slide 43

Don’t Mess Up the Stack !
Just before returning from a procedure

Make sure the stack pointer ESP is pointing at return address

Example of a messed-up procedure
Pushes EAX on the stack before returning

Stack pointer ESP is NOT pointing at return address!
main PROC

call messedup
. . .
exit

main ENDP
messedupPROC

push EAX
ret

messedupENDP

Free Area

Used

high addr

Stack

ESP
Return AddrESP

ESP EAX Value Where to return?

EAX value is NOT
the return address!

Libraries and Procedures COE 205 – KFUPM slide 44

Nested Procedure Calls

By the time Sub3 is called, the stack
contains all three return addresses

main PROC
.
.
call Sub1
exit

main ENDP

Sub1 PROC
.
.
call Sub2
ret

Sub1 ENDP

Sub2 PROC
.
.
call Sub3
ret

Sub2 ENDP

Sub3 PROC
.
.
ret

Sub3 ENDP

return address of call Sub3 ESP

return address of call Sub2

return address of call Sub1

Libraries and Procedures COE 205 – KFUPM slide 45

Parameter Passing
Parameter passing in assembly language is different

More complicated than that used in a high-level language

In assembly language
Place all required parameters in an accessible storage area

Then call the procedure

Two types of storage areas used
Registers: general-purpose registers are used (register method)

Memory: stack is used (stack method)

Two common mechanisms of parameter passing
Pass-by-value: parameter value is passed

Pass-by-reference: address of parameter is passed

Libraries and Procedures COE 205 – KFUPM slide 46

Passing Parameters in Registers
;---
; ArraySum: Computes the sum of an array of integers
; Receives: ESI = pointer to an array of doublewords
; ECX = number of array elements
; Returns: EAX = sum
;---
ArraySum PROC

mov eax,0 ; set the sum to zero
L1: add eax, [esi] ; add each integer to sum

add esi, 4 ; point to next integer
loop L1 ; repeat for array size
ret

ArraySum ENDP

ESI: Reference parameter = array address

ECX: Value parameter = count of array elements

Libraries and Procedures COE 205 – KFUPM slide 47

Preserving Registers
Need to preserve the registers across a procedure call

Stack can be used to preserve register values

Which registers should be saved?
Those registers that are modified by the called procedure

But still used by the calling procedure

We can save all registers using pusha if we need most of them
However, better to save only needed registers when they are few

Who should preserve the registers?
Calling procedure: saves and frees registers that it uses

Registers are saved before procedure call and restored after return

Called procedure: preferred method for modular code
Register preservation is done in one place only (inside procedure)

Libraries and Procedures COE 205 – KFUPM slide 48

Example on Preserving Registers
;---
; ArraySum: Computes the sum of an array of integers
; Receives: ESI = pointer to an array of doublewords
; ECX = number of array elements
; Returns: EAX = sum
;---
ArraySum PROC

push esi ; save esi, it is modified
push ecx ; save ecx, it is modified
mov eax,0 ; set the sum to zero

L1: add eax, [esi] ; add each integer to sum
add esi, 4 ; point to next integer
loop L1 ; repeat for array size
pop ecx ; restore registers
pop esi ; in reverse order
ret

ArraySum ENDP No need to save EAX. Why?

Libraries and Procedures COE 205 – KFUPM slide 49

USES Operator
The USES operator simplifies the writing of a procedure

Registers are frequently modified by procedures

Just list the registers that should be preserved after USES
Assembler will generate the push and pop instructions

ArraySum PROC USES esi ecx
mov eax,0

L1: add eax, [esi]
add esi, 4
loop L1
ret

ArraySum ENDP

ArraySum PROC
push esi
push ecx
mov eax,0

L1: add eax, [esi]
add esi, 4
loop L1
pop ecx
pop esi
ret

ArraySum ENDP

Libraries and Procedures COE 205 – KFUPM slide 50

Next . . .

Link Library Overview

The Book's Link Library

Runtime Stack and Stack Operations

Defining and Using Procedures

Program Design Using Procedures

Libraries and Procedures COE 205 – KFUPM slide 51

Program Design using Procedures
Program Design involves the Following:

Break large tasks into smaller ones

Use a hierarchical structure based on procedure calls

Test individual procedures separately

Integer Summation Program:
Write a program that prompts the user for multiple 32-bit integers,
stores them in an array, calculates the array sum, and displays the
sum on the screen.

Main steps:
1. Prompt user for multiple integers
2. Calculate the sum of the array
3. Display the sum

Libraries and Procedures COE 205 – KFUPM slide 52

Structure Chart

Summation
Program (main)

Clrscr PromptForIntegers ArraySum DisplaySum

WriteStringWriteString ReadInt WriteIntWriteInt

Structure Chart
Above diagram is called a structure chart

Describes program structure, division into procedure, and call sequence

Link library procedures are shown in grey

Libraries and Procedures COE 205 – KFUPM slide 53

Integer Summation Program – 1 of 4
INCLUDE Irvine32.inc

ArraySize EQU 5

.DATA
prompt1 BYTE "Enter a signed integer: ",0
prompt2 BYTE "The sum of the integers is: ",0
array DWORD ArraySize DUP(?)

.CODE
main PROC

call Clrscr ; clear the screen
mov esi, OFFSET array
mov ecx, ArraySize
call PromptForIntegers ; store input integers in array
call ArraySum ; calculate the sum of array
call DisplaySum ; display the sum
exit

main ENDP

Libraries and Procedures COE 205 – KFUPM slide 54

Integer Summation Program – 2 of 4
;---
; PromptForIntegers: Read input integers from the user
; Receives: ESI = pointer to the array
; ECX = array size
; Returns: Fills the array with the user input
;---
PromptForIntegers PROC USES ecx edx esi

mov edx, OFFSET prompt1
L1:

call WriteString ; display prompt1
call ReadInt ; read integer into EAX
call Crlf ; go to next output line
mov [esi], eax ; store integer in array
add esi, 4 ; advance array pointer
loop L1

ret
PromptForIntegers ENDP

Libraries and Procedures COE 205 – KFUPM slide 55

Integer Summation Program – 3 of 4
;---
; ArraySum: Calculates the sum of an array of integers
; Receives: ESI = pointer to the array,
; ECX = array size
; Returns: EAX = sum of the array elements
;---
ArraySum PROC USES esi ecx
mov eax,0 ; set the sum to zero

L1:
add eax, [esi] ; add each integer to sum
add esi, 4 ; point to next integer
loop L1 ; repeat for array size

ret ; sum is in EAX
ArraySum ENDP

Libraries and Procedures COE 205 – KFUPM slide 56

Integer Summation Program – 4 of 4
;---

; DisplaySum: Displays the sum on the screen

; Receives: EAX = the sum

; Returns: nothing

;---

DisplaySum PROC

mov edx, OFFSET prompt2

call WriteString ; display prompt2

call WriteInt ; display sum in EAX

call Crlf

ret

DisplaySum ENDP

END main

Libraries and Procedures COE 205 – KFUPM slide 57

Sample Output

Enter a signed integer: 550

Enter a signed integer: -23

Enter a signed integer: -96

Enter a signed integer: 20

Enter a signed integer: 7

The sum of the integers is: +458

Libraries and Procedures COE 205 – KFUPM slide 58

Parameter Passing Through Stack
Parameters can be saved on the stack before a
procedure is called.

The called procedure can easily access the parameters
using either the ESP or EBP registers without altering
ESP register.

Example
Then, the assembly language
code fragment looks like:
mov i, 25
mov j, 4
push 1
push j
push i
call Test

Suppose you want to
implement the following
pseudo-code:
i = 25;
j = 4;

Test(i, j, 1);

Libraries and Procedures COE 205 – KFUPM slide 59

Parameter Passing Through Stack

Example: Accessing parameters on the
stack
Test PROC

mov AX, [ESP + 4] ;get i
add AX, [ESP + 8] ;add j
sub AX, [ESP + 12] ;subtract parm 3

(1) from sum
ret

Test ENDP

Lower Address

Higher Address

ESP
ESP+4
ESP+8
ESP+12

Libraries and Procedures COE 205 – KFUPM slide 60

Call & Return Instructions

Pop IP
Pop CS
SP = SP + imm

imm (FAR) RET

Pop IP
Pop CS (FAR) RET

Pop IP
SP = SP + immimmRET

Pop IP RET

Push CS
Push IP
CS:IP= [m]

m (FAR) CALL

Push CS
Push IP
CS:IP=address of label name

label name (FAR) CALL

Push IP
IP = [r/m] r/mCALL

Push IP
IP= IP + displacement relative to next instruction label name CALL

Note Operand Instruction

Libraries and Procedures COE 205 – KFUPM slide 61

Freeing Passed Parameters From Stack
Use RET N instruction to free parameters from stack

Example: Accessing parameters on the
stack
Test PROC

mov AX, [ESP + 4] ;get i
add AX, [ESP + 8] ;add j
sub AX, [ESP + 12] ;subtract parm. 3

(1) from sum
ret 12

Test ENDP

Libraries and Procedures COE 205 – KFUPM slide 62

Local Variables
Local variables are dynamic data whose values must be
preserved over the lifetime of the procedure, but not
beyond its termination.

At the termination of the procedure, the current
environment disappears and the previous environment
must be restored.

Space for local variables can be reserved by subtracting
the required number of bytes from ESP.

Offsets from ESP are used to address local variables.

Libraries and Procedures COE 205 – KFUPM slide 63

Local Variables

Test PROC
push EBP
mov EBP, ESP
sub ESP, 4
push EAX
mov DWORD PTR [EBP-4], 9
mov EAX, [EBP + 8]
add [EBP-4], EAX
……
pop EAX
mov ESP, EBP
pop EBP
ret 4

Test ENDP

void Test(int i){
int k;

k = i+9;
……

}

Assembly Language Pseudo-code (Java-like)

Libraries and Procedures COE 205 – KFUPM slide 64

Summary
Procedure – Named block of executable code

CALL: call a procedure, push return address on top of stack

RET: pop the return address and return from procedure

Preserve registers across procedure calls

Runtime stack – LIFO structure – Grows downwards
Holds return addresses, saved registers, etc.

PUSH – insert value on top of stack, decrement ESP

POP – remove top value of stack, increment ESP

Use the Irvine32.lib library for standard I/O
Include Irvine32.inc to make procedure prototypes visible

You can learn more by studying Irvine32.asm code

